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The Problem

Consider:

A={ay,...,an}, m < oo —afinite set of events;

(2,, — set of probability distributions over A:
Q,, = {[wl,...,wm] ceR™|Vi:w; 20, > w; = 1}

(unit (m — 1)-simplex)
We receive:
p € Q,, — input distribution;

and our task is to encode p with some given fidelity criterion.
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Applications

Universal source coding

1960’s: Lynch-Davisson codes (lossless coding of types)

1970’s: “Rice machine” (coding of variance)

1980’s: Rissanen’s two-part universal codes (parametric models)

code = <guantized distribution> <encoded sample>
... but coding of distributions is never handled on its own!

Image recognition (SIFT/SURF/CHoG algorithms — 2004+)

work with “histograms of gradients” in images

task is to quantize histograms to simplify search and retrieval
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Quantization (conventional setting)

Consider:
d (p, q) — distance between p, q € Q1,,,; p — input, ¢g— reconstruction

Q C Q,, —a set of reconstruction points;

Fixed-rate case:

R(Q) = log, |Q| = const.

If we further know that p ~ 6, where 6 is some density over (},,,, then
the problem becomes:

d(Qm,0,R) = inf E,cq, mind(p,q),
I%ICS%% pro 959

l.e., the task is to minimize the expected distance to the reconstruction
point.
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Quantization (cont’d)

Conventional setting (6 is a density over 2,,,):

d(Qm,0,R) = inf E,cq, mind(p,q),
ICC?2|C<Q2WIEz peo 9€8

However, in practice, we usually:
have no information about ¢; and/or

need to transmit/use quantized distribution instantaneously!!!

In two-part universal code quantized distribution is used right
away to encode a block;

In image recognition histograms of a query image are
created/used once.

Hence, finding minimal expected distance d(€,,,, 8, R) is not exactly
Wh at We needl WITMSE'10 August 16-18, 2010, Tampere, Finland — p. 6/21



Quantization (Minimax setting)

Let’'s minimize worst-case distance:

d* (2, R) = Qicnfgm ;relgii f}éiél d(p,q) .
Ql<2"

The problem is now purely geometric!

It is equivalent to a problem of covering of the space (2,,, with at
most 2% balls of the same radius.

Dual problem can also be formulated:

R(e) = inf log |Q]

QCQyy: maxpeq,, Mingeg d(p,q)<e
Also a special case of a known problem:

R(¢e) is the Kolmogorov’s e-entropy for metric space (£2,,,, d).
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Known Results for Covering Radius
Problem

Let A C R* — compact, with positive Jordan measure \*(4) > 0.
Theorem 1 (S.Graf & H.Luschgy, 2000). With R — oo:

d* (A, R) ~ Ch.o Y/ AE(A) 27 1/F

Cr.o = inf 2%/ g ([0,1]%, R)
R>0

where:

IS a constant (covering coefficient for the unit cube).

The exact value of C, , depends on the distance

da(p,@) = lp —dlla = (O lpi — @)™, a>1.

For example: Cy oo = % (for any k), Cz 1 = % Coo = «/%, etc.
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Achievable Covering Radius for
Probability Distributions

By replacing A with simplex €2,,,, and noticing that:

af [k+1 vm
VO] Qm — p— ;
a=v"2
we arrive at the following statement.
Corollary 1. With R — oo:
A/ TN R
d* Qm,R ~Y Cm_ a m—1 2_m—1 ,

where C),,_1 o are some known constants.
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Achievable Covering Radius for
Probability Distributions

So what'’s special about our problem?

R

a5, R) ~ Cry1.0 "/ Vol(Q,,) 2771,

Leading term decays as the number of dimensions m increases:

"/ Vol () = ’”‘i/( VAU (i>

m—1)! m m?

Vol(Qm)

10 15 20
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Quantization of Distributions

Design of a practical algorithm:
Choice of lattice
Algorithm for finding nearest reconstruction point
Enumeration of lattice points

Encoding
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Type Lattice

Given some integer n > 1, we define a lattice @),, C ,,:

Qn:{[Q1a---an]€Qm’\V%:q'i:%, ki,néz+; szz:n} )

Lattice points ¢ € (),, coincide with memoryless types!

Examples in m = 3 dimensions:

n=1 n=2 n=3

1.0:@ 1.0j© 1.0j®

b ] 1 e
0.759 0.757 . 0.757

] ] L] ]

] ] p y
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] ] ® ]
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O‘OM e O-OM v O'OM o

0.0 0. 0.

0.25 1.0 . 1.0 1.0
05 o075 )

0
025 5 075 |

.0
P2 p2 p2

NB: in this example @, is equivalent to a hexagonal lattice. With m > 3 it is equivalent
to a bounded subset of lattice A,, (cf. SPLAG, Chapter 4).
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Quantization Algorithm

Algorithm 1. Given p € Q.,,, and n find nearest type {£.,... k= 1.

n

1. Compute numbers (best unconstrained approximation):
ki=|npi+1], n' => k.
2. If n’ = n we are done. Otherwise, compute §; = k; — np; , and sort them:

- <

Y

<5j1<5j2<...<5j

N

1
2

3. Let A =n' —n. If A > 0then we decrement d values k; with largest errors

k; i=1,....m—A—1,
. — 1
kj, =

k; -1, i=m—A,....m,
otherwise, we increment |A| values k; with smallest errors:

/ .
o — kji+1’ 1=1,...,|A],
Ji k;._, i=|A|+1,....m.
1
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Enumeration of Types

The number of points in )., is essentially the number of integers k1, ..., kn
with total n, which is:
n+m-—1
Q= (""" ).

Indices of types with frequencies k1, ..., k., can be computed by:

n—2k;—1 : j—1 :

— i — k —j—1
g(klw")kn): Z (n ' (=1 .l+m J )""kn—l-
=1 i=0 m—j—1

This formula follows by induction (starting with m = 2, 3, etc.), and performs
lexicographic enumeration of types. For example:

£0,0,...,0,n) = 0,
£0,0,...,1,n—1) = 1,
n+m—1
¢(n,0,...,0,0) = ("rmTh 1.

WITMSE'10 August 16-18, 2010, Tampere, Finland — p. 14/21



Encoding

We simply compute type indices £(kq, . .., k), and transmit them by
using fixed-rate codes.

The rate of such code satisfies (for large n):
R(n) = [logs |Qn|] = (m — 1) logy n — log, (m — 1)! + O (1) .

The entire algorithm is remarkably simple:
O(m) steps to compute nearest type
O(n) steps to compute lexicographic index

O(1) steps to create and transmit the code
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Analysis: Properties of Voronoli Cells

Vertices of Voronoi cells (or holes) in type lattice are located at

* . S o
qi_q+vza qGQna /L_]-a"'am ]-7 n=3
where
1.0 ®
] @
1] m—s m—1i —1 —1 0.757
U = | T T, e ] |
~ ~~ - ~~ o P3 05 .
1 times m—1 times ]
0.257 oo

This implies that (with a = |m/2]):

in d
max min de (p, q)

max min ds(p,
s ok d2(p.9)

in d
max min di(p, g)

L ]
] e
O.OM - "
0. . 1.0

(L= 5) s

[ a(m—a) 7

1 2a(m—a)
n m )

S |=

WITMSE'10 August 16-18, 2010, Tampere, Finland — p. 16/21



Analysis: Performance of Type
Quantization

Theorem 2. The following holds (with large R):

1 R

min max min d(p, ~ — 1 2- m-T

n:|Qn |<2E PEQm 4EQu Py 4) =) == (m — 1)!
_ 1

min  max min da(p,q) ~ a(nfn a) - 2w )

n:|Qn| <27 pEQm q€Qn ™/ (m —1)!
_ 1

min max min dy(p,q) ~ QQ(Z’; a) - 9" T

n:|Qn|<2F pEQm ¢€Qn ™/ (m — 1)!

In all cases the decay rate 2 w7 is optimal. Furthermore, the factor

1 — E + O (L) :
m=/(m —1) m m?
matches the decay rate w.r.t. m predicted for probability quantization problem.
The only differences are in leading factors.
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Analysis: Leading Factors

L, - distance case:
optimal: Cp—1.06 =3 .

type quantizer: 1 — % o

0.6 |

0.4

0.2

0 5 10 15 20 25 30
m

1/2
1-1/m

NB: Maximum L.-error of type quantizer is within a factor of 2 from
minimum possible.
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Type Quantization: Summary

Have shown that:

There exists a remarkably simple algorithm for quantization of
probability distributions

It uses types with fixed total as quantization lattice.

It is asymptotically optimal in high-rate regime

the only difference is in the leading factor. E.g. for L..,-norm it is
shown to be within a factor of 2 from minimum possible.
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Beyond Types

Dual type lattice:

Q* L Um_l (Q —|—’U) . Vi — 1 [ m—q m—1 —1 —1
n 1=0 n vy v n{ m? > m’ m?’ ") m
\ . J/ G J/
Vo Vo
7 times m—1 times

l.e. we simply put additional points in holes of ),,.

n=2, dual lattice

: - 0.0 ' - 0.0
L ] L]
0.0 0.5 p1 0.0 05 p1
0.0 0.0
0.25 1.0 0.25 1.0
0.5 0.5
075 4, 075 10
p2 p2

Dual type lattice achieves (asymptotically with m — o0):

factor of 2 reduction in L; and L. radii, and

factor of /3 reduction in L radius.
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Conclusions & Open Problem

We have shown that type-lattice can be used for quantization of
distributions

very simple algorithm was developed for that purpose

But, we also noted that thinner lattices exist!!!

Dual type lattice Q7

FEg, Aoy, and other lattices in “lucky dimensions”

This brings a question:

Is there a better way to sample data and map them to
probability estimates?

Better than types in covering-radius sense?
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