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The Problem

Consider:

A = {α1, . . . , αm}, m < ∞ – a finite set of events;

Ωm – set of probability distributions over A:

Ωm =
{
[ω1, . . . , ωm] ∈ Rm

∣∣∣ ∀i : ωi � 0 ,
∑

i ωi = 1
}

(unit (m− 1)-simplex)

We receive:

p ∈ Ωm – input distribution;

and our task is to encode p with some given fidelity criterion.
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Applications

Universal source coding

1960’s: Lynch-Davisson codes (lossless coding of types)

1970’s: “Rice machine” (coding of variance)

1980’s: Rissanen’s two-part universal codes (parametric models)

code = <quantized distribution> <encoded sample>

... but coding of distributions is never handled on its own!

Image recognition (SIFT/SURF/CHoG algorithms – 2004+)

work with “histograms of gradients” in images

task is to quantize histograms to simplify search and retrieval
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Quantization (conventional setting)

Consider:

d (p, q) – distance between p, q ∈ Ωm; p – input, q– reconstruction

Q ⊂ Ωm – a set of reconstruction points;

Fixed-rate case:

R(Q) = log2 |Q| = const.

If we further know that p ∼ θ, where θ is some density over Ωm, then
the problem becomes:

d̄(Ωm, θ, R) = inf
Q⊂Ωm

|Q|�2R

Ep∈Ωm

p∼θ
min
q∈Q

d(p, q) ,

I.e., the task is to minimize the expected distance to the reconstruction
point.
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Quantization (cont’d)

Conventional setting (θ is a density over Ωm):

d̄(Ωm, θ, R) = inf
Q⊂Ωm

|Q|�2R

Ep∈Ωm

p∼θ
min
q∈Q

d(p, q) ,

However, in practice, we usually:

have no information about θ; and/or

need to transmit/use quantized distribution instantaneously!!!

in two-part universal code quantized distribution is used right
away to encode a block;

in image recognition histograms of a query image are
created/used once.

Hence, finding minimal expected distance d̄(Ωm, θ, R) is not exactly
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Quantization (Minimax setting)

Let’s minimize worst-case distance:

d∗(Ωm, R) = inf
Q⊂Ωm

|Q|�2R

max
p∈Ωm

min
q∈Q

d(p, q) .

The problem is now purely geometric!

it is equivalent to a problem of covering of the space Ωm with at
most 2R balls of the same radius.

Dual problem can also be formulated:

R(ε) = inf
Q⊂Ωm: maxp∈Ωm minq∈Q d(p,q)�ε

log |Q| ,

Also a special case of a known problem:

R(ε) is the Kolmogorov’s ε-entropy for metric space (Ωm, d).
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Known Results for Covering Radius
Problem

Let A ⊂ Rk – compact, with positive Jordan measure λk(A) > 0.

Theorem 1 (S.Graf & H.Luschgy, 2000). With R → ∞:

d∗α(A,R) ∼ Ck,α
k

√
λk(A) 2−R/k

where:

Ck,α = inf
R>0

2R/k d∗α([0, 1]
k, R)

is a constant (covering coefficient for the unit cube).

The exact value of Ck,α depends on the distance

dα(p, q) = ||p− q||α =
(∑

i

|pi − qi|α
)1/α

, α � 1 .

For example: Ck,∞ = 1
2 (for any k), C2,1 = 1√

2
, C2,2 =

√
2

3
√
3
, etc.
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Achievable Covering Radius for
Probability Distributions

By replacing A with simplex Ωm, and noticing that:

Vol(Ωm) =
ak

k!

√
k + 1

2k

∣∣∣∣∣k=m−1
a=

√
2

=

√
m

(m− 1)!
,

we arrive at the following statement.

Corollary 1. With R → ∞:

d∗α(Ωm, R) ∼ Cm−1,α
m−1

√ √
m

(m− 1)!
2−

R
m−1 ,

where Cm−1,α are some known constants.
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Achievable Covering Radius for
Probability Distributions

So what’s special about our problem?

d∗α(Ωm, R) ∼ Cm−1,α
m−1

√
Vol(Ωm) 2−

R
m−1 .

Leading term decays as the number of dimensions m increases:

m−1

√
Vol(Ωm) = m−1

√ √
m

(m− 1)!
=

e

m
+O

(
1

m2

)
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Quantization of Distributions

Design of a practical algorithm:

Choice of lattice

Algorithm for finding nearest reconstruction point

Enumeration of lattice points

Encoding

WITMSE’10 August 16-18, 2010, Tampere, Finland – p. 11/21



Type Lattice

Given some integer n � 1, we define a lattice Qn ⊂ Ωm:

Qn =
{
[q1, . . . , qm] ∈ Qm

∣∣ ∀i : qi = ki

n , ki, n ∈ Z+ ;
∑

i ki = n
}
.

Lattice points q ∈ Qn coincide with memoryless types!

Examples in m = 3 dimensions:

NB: in this example Qn is equivalent to a hexagonal lattice. With m > 3 it is equivalent

to a bounded subset of lattice An (cf. SPLAG, Chapter 4).
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Quantization Algorithm

Algorithm 1. Given p ∈ Ωm and n find nearest type
{

k1

n
, . . . , km

n

}
:

1. Compute numbers (best unconstrained approximation):

k
′
i =

⌊
npi +

1

2

⌋
, n′ =

∑
i
k′
i .

2. If n′ = n we are done. Otherwise, compute δi = k′
i − npi , and sort them:

− 1

2
< δj1 � δj2 � . . . � δjm �

1

2
,

3. Let Δ = n′ − n. If Δ > 0 then we decrement d values k′
i with largest errors

kji =

[
k′

ji
, i=1,...,m−Δ−1 ,

k′

ji
−1, i=m−Δ,...,m ,

otherwise, we increment |Δ| values k′
i with smallest errors:

kji =

[
k′

ji
+1, i=1,...,|Δ| ,

k′

ji
, i=|Δ|+1,...,m .
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Enumeration of Types

The number of points in Qn is essentially the number of integers k1, . . . , km

with total n, which is:

|Qn| =
(n+m− 1

m− 1

)
.

Indices of types with frequencies k1, . . . , km can be computed by:

ξ(k1, . . . , kn) =

n−2∑
j=1

kj−1∑
i=0

(n− i−∑j−1

l=1
kl +m− j − 1

m− j − 1

)
+ kn−1.

This formula follows by induction (starting with m = 2, 3, etc.), and performs
lexicographic enumeration of types. For example:

ξ(0, 0, . . . , 0, n) = 0 ,

ξ(0, 0, . . . , 1, n− 1) = 1 ,

. . .

ξ(n, 0, . . . , 0, 0) =
(
n+m−1

m−1

)− 1 .
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Encoding

We simply compute type indices ξ(k1, . . . , kn), and transmit them by
using fixed-rate codes.

The rate of such code satisfies (for large n):

R(n) = 	log2 |Qn|
 = (m− 1) log2 n− log2 (m− 1)! +O
(
1
n

)
.

The entire algorithm is remarkably simple:

O(m) steps to compute nearest type

O(n) steps to compute lexicographic index

O(1) steps to create and transmit the code
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Analysis: Properties of Voronoi Cells

Vertices of Voronoi cells (or holes) in type lattice are located at

q∗i = q + vi, q ∈ Qn, i = 1, . . . ,m− 1,

where

vi =
1
n

[
m−i
m , . . . , m−i

m︸ ︷︷ ︸
i times

, −i
m , . . . , −i

m︸ ︷︷ ︸
m−i times

]
.

This implies that (with a = �m/2�):

max
p∈Ωm

min
q∈Qn

d∞(p, q) = 1
n

(
1− 1

m

)
,

max
p∈Ωm

min
q∈Qn

d2(p, q) = 1
n

√
a(m−a)

m ,

max
p∈Ωm

min
q∈Qn

d1(p, q) = 1
n

2a(m−a)
m .
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Analysis: Performance of Type
Quantization

Theorem 2. The following holds (with large R):

min
n:|Qn|�2R

max
p∈Ωm

min
q∈Qn

d∞(p, q) ∼ (
1− 1

m

) 1
m−1

√
(m− 1)!

2−
R

m−1 ,

min
n:|Qn|�2R

max
p∈Ωm

min
q∈Qn

d2(p, q) ∼
√

a(m−a)
m

1
m−1

√
(m− 1)!

2−
R

m−1 ,

min
n:|Qn|�2R

max
p∈Ωm

min
q∈Qn

d1(p, q) ∼ 2a(m−a)
m

1
m−1

√
(m− 1)!

2−
R

m−1 .

In all cases the decay rate 2−
R

m−1 is optimal. Furthermore, the factor

1
m−1

√
(m− 1)!

=
e

m
+O

(
1

m2

)
,

matches the decay rate w.r.t. m predicted for probability quantization problem.

The only differences are in leading factors.
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Analysis: Leading Factors

L∞ - distance case:

optimal: Cm−1,∞ = 1
2

type quantizer: 1− 1
m

1/2
1–1/m

0

0.2

0.4

0.6

0.8

1

5 10 15 20 25 30

m

NB: Maximum L∞-error of type quantizer is within a factor of 2 from
minimum possible.
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Type Quantization: Summary

Have shown that:

There exists a remarkably simple algorithm for quantization of
probability distributions

It uses types with fixed total as quantization lattice.

It is asymptotically optimal in high-rate regime

the only difference is in the leading factor. E.g. for L∞-norm it is
shown to be within a factor of 2 from minimum possible.
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Beyond Types

Dual type lattice:

Q
∗
n = ∪m−1

i=0 (Qn + vi) ; vi =
1

n

[
m−i
m

, . . . , m−i
m︸ ︷︷ ︸

i times

, −i
m

, . . . , −i
m︸ ︷︷ ︸

m−i times

]
.

I.e. we simply put additional points in holes of Qn.

⇒

Dual type lattice achieves (asymptotically with m → ∞):

factor of 2 reduction in L1 and L∞ radii, and

factor of
√
3 reduction in L2 radius.
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Conclusions & Open Problem

We have shown that type-lattice can be used for quantization of
distributions

very simple algorithm was developed for that purpose

But, we also noted that thinner lattices exist!!!

Dual type lattice Q∗
n

E8, Λ24, and other lattices in “lucky dimensions”

This brings a question:

Is there a better way to sample data and map them to
probability estimates?

Better than types in covering-radius sense?
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