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Abstract. Transmission and storage of local feature descriptors are of
critical importance for mobile visual search applications. We perform
a comprehensive survey of Scale Invariant Feature Transform (SIFT)
compression schemes proposed in the literature and evaluate them in
a common framework. Further, we compare the different schemes to
the recently proposed low bit-rate Compressed Histogram of Gradients
(CHoG) descriptor. We show that CHoG outperforms all SIFT compres-
sion schemes. We implement CHoG in a large-scale mobile image retrieval
system and show that transmitting CHoG feature data are an order of
magnitude smaller than transmitting SIFT descriptors or JPEG images.

1 Introduction

Local image features have become pervasive in the areas of computer vision and
image retrieval. Feature compression is vital for reduction in storage, latency
and transmission in mobile visual search applications.

Transmission time: For mobile visual search applications, bandwidth is
a limiting factor. One approach used in mobile visual search applications is to
transmit the JPEG compressed query image over the network, but this might
be prohibitively expensive at low uplink speeds. An alternate approach is to
extract feature descriptors on the phone, compress the descriptors and transmit
them over the network. In [1], we show that such an approach can reduce the
application latency by an order of magnitude.

Server-client Caching: For several applications, a subset of descriptors are
stored in RAM for fast access. Takacs et al. [2] cache a set of descriptors on the
mobile client to enable an outdoors mobile augmented reality experience. Having
compact descriptors allows storage of a larger set of descriptors in main memory.

Server-side Storage: Image and video retrieval applications need query
images to be matched against databases of billions of features. E.g., 1000 hours
of video produces ∼10 billion local descriptors. Storing 10 billion uncompressed
SIFT [3] descriptors would require ∼10 TB of storage. More compact descriptors
will lead to faster file accesses.

SIFT is the most popular descriptor in computer vision for retrieval appli-
cations. In this work, we perform a comprehensive survey of SIFT compression
schemes and evaluate them in a common framework.

1.1 Prior Work and Outline
We broadly classify SIFT compression schemes into three categories: Hashing,
Transform Coding, and Vector Quantization.
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Hashing: Locality Sensitive Hashing (LSH) [4, 5] is the most popular hashing
technique for high dimensional descriptors. In [6], Torralba et al. build binary
codes for high dimensional descriptors using machine learning techniques like
Restricted Boltzmann Machines (RBM) and Similarity Sensitive Coding (SSC).
In [7], Weiss et al. propose a scheme called Spectral Hashing (SH) that out-
performs RBM and SSC based approaches. For each of these schemes, exact
Euclidean distances are approximated or estimated by Hamming distances over
binary codewords.

Transform Coding: In [8], we have studied dimensionality reduction of
SIFT descriptors using the Karhunen-Lòeve Transform (KLT) followed by en-
tropy coding. The KLT-based coding is known to work best for data with Gaus-
sian statistics. Since SIFT statistics are highly non-Gaussian, we also study the
performance of a transform coding scheme based on Independent Component
Analysis (ICA).

Vector Quantization: Vector Quantization (VQ) of SIFT features is most
commonly used in the “bag-of-features” image retrieval framework. For such ap-
plications, SIFT features are quantized using flat k-means (FKM) or hierarchical
k-means (HKM) [9] to form a bag of “visual words”. HKM or FKM can also be
used for compression of descriptors for storage or transmission. Jegou et al. [10]
in their recent work propose a scheme called Product Quantization (PQ), where
the SIFT descriptor is divided into smaller blocks and VQ is performed on each
block. Some hybrid schemes have also been proposed in the literature. In [11],
Jegou et al. propose a scheme called Hamming Embedding (HE), where SIFT
descriptors are first coarsely quantized using HKM, and binary hashes are used
for refinement in each quantization cell.

In our own work [12, 1], we propose a framework for computing low bit-
rate feature descriptors called CHoG. Gradient histograms are quantized using
Huffman trees, Type Quantization or Lloyd Max VQ and compressed efficiently
using fixed or variable length codes.

Here, we will evaluate the different SIFT compression schemes in a common
framework. In Section 2, we survey the different SIFT compression schemes
proposed in the literature. In Section 3, we review the CHoG descriptor. Finally,
in Section 4, we evaluate the performance of the different schemes.

2 SIFT Compression Schemes

2.1 Hashing

Locality Sensitive Hashing: We use the LSH scheme proposed by Yeo et
al. [4]. To build a hash, we first randomly generate a set of hyperplanes that
pass through the origin. Each bit of the hash is then determined by which side
of the hyperplane the SIFT descriptor lies. and the Hamming distance of their
hashes.

Similarity Sensitive Coding: Torralba et al. [6] use machine learning tech-
niques such as SSC and RBM to train binary codes for high dimensional descrip-
tors. The Boosting SSC algorithm learns an embedding of the original Euclidean
space into a binary space such that distances between vectors in the original
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space are correlated with their Hamming distances in the binary space. Each bit
of the hash is obtained as the output of a weak classifier.

Spectral Hashing: Weiss et al. propose Spectral Hashing in their recent work [7].
The spectral hashing scheme performs Principal Component Analysis (PCA) on
the data and fits a multidimensional rectangle to it. The dimensions of the rect-
angle determine the hashing functions of each bit.

2.2 Transform Coding

Karhunen-Loève Transform: Transform coding of SIFT descriptors was first
proposed in [8]. The compression pipeline first applies a Karhunen-Lòeve Trans-
form (KLT) transform (or PCA) to decorrelate the different dimensions of the
feature descriptor. Then, each dimension of the KLT vector is scalar quantized.
The quantized coefficients of the descriptors are entropy coded with an arith-
metic coder. In [8], it was observed that applying the KLT is effective at low
rates, but hurts performance at high rates. At high rates, scalar quantization
and entropy coding with no transform performs better.

The KLT gives a good rotation for scalar quantization for Gaussian statis-
tics as the decorrelation aligns the Gaussian distribution with the symbol axes.
The KLT is optimal for Gaussian data, causing the transformed coefficients to be
statistically independent. However, the statistics for SIFT features are not Gaus-
sian as shown in Figure 1. Our goal is to make the transformed coefficients as
statistically independent as possible. Hence, we explore an ICA based transform
which outperforms the KLT.

ICA based Transform: Under high-rate assumptions, Narozny et al. in [13]
provide a framework to compute the optimal linear transform for making the
transformed coefficients as independent as possible, without assuming Gaussian
statistics of the input signal or orthogonality of the transform matrix. They
define the Generalized Coding Gain (GCG) as the ratio between distortion-rate
functions in case of no transform vs. applying the transform. The transform that
maximizes the GCG also maximizes the Generalized Maximum Reducible Bits
defined as

RGMRB = RI (D)−RA (D)

= 1
dI (X1; . . . ;Xd)− 1

dI (Y1; . . . ; Yd)− 1
2d log2

(
det[diag(A−TA−1)]

det[A−TA−1]

)
,

where RI (D) and RA (D) are rate-distortion functions in case of no trans-
form and applying the transform respectively, d is the length of the descrip-
tor, X = [X1; . . . ;Xd] is a vector which represents the signal to be encoded,
Y = [Y1; . . . ; Yd] represents the transform coefficients, I (.) is mutual informa-
tion function and A is the transform d × d matrix where Y = AX. Thus, the
optimal linear transform Aopt is calculated as

Aopt = arg minAI (Y1; . . . ; Yd) + 1
2 log2

(
det[diag(A−TA−1)]

det[A−TA−1]

)

The first term is non-negative and equals to zero if and only if the transform
coefficients are independent. The matrix that minimizes this term is the solution
to the ICA problem. Note that the second term is also non-negative and equal
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to zero iff the columns of A−1 are pairwise orthogonal. Hence, it is considered as
a pseudo-distance to orthogonality of the transform matrix A. We use the code
provided by the authors in [13] to solve the minimization problem. For more
details, the reader is referred to [13]. The transform is applied the same way as
KLT, but we expect better compression efficiency due to the highly non-Gaussian
statistics of the SIFT descriptors.
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Fig. 1. We observe that the statistics of SIFT descriptors are non-Gaussian.

2.3 Vector Quantization

Product Quantization: Since the SIFT descriptor is high dimensional, Je-
gou et al. [10] propose a product quantizer which operates on lower dimensional
subspaces and quantizes each subspace separately. The authors propose two vari-
ants of the scheme. The first scheme decomposes the SIFT descriptor directly
into smaller blocks and performs VQ on each block. In the second scheme, the
authors coarsely quantize the full descriptor with flat k-means or hierarchical
k-means using 103 to 106 nodes. The residual is then quantized using a product
quantizer. The two schemes perform comparably, and we consider the former
scheme in our comparisons here.

In [10], the authors also investigate how different dimensions of the descriptor
should be grouped together for good performance. The order that corresponds
to grouping consecutive components together performs the best. Intuitively, this
works well because histograms of consecutive cells are quantized together. There
are two parameters used to control the bitrate: the number of blocks, denoted as
B, and the size of the codebook for each block, denoted as C. Fixed length codes
are used for each block and the bitrate of each descriptor is given by B×dlog2 Ce.
In Section 4, we consider B = 1, 2, 4, 8, 16 and C = 16, 64, 256, 1024. In the case
of B = 1, the product quantizer reverts to flat k-means for the full descriptor.

Tree Structured Vector Quantization: Nistér and Stewénius [9] use HKM
or a Tree Structured Vector Quantizer (TSVQ) to quantize SIFT descriptors and
build a Inverted File System for fast indexing. Here, we use the same scheme for
quantization and compression of SIFT descriptors. We quantize SIFT descriptors
with a 106 node TSVQ with a branch factor (BF) of 10 and depth (D) of 6,
requiring 20 bits per descriptor. A significantly larger TSVQ is not practical due
to the size of the code book.

3 CHoG Descriptor

CHoG [12] is a Histogram of Gradients descriptor that is designed to work well
at low bitrates. We highlight some key aspects of the descriptor here and readers
are referred to [12, 1] for more details. First, we divide the patch into soft log
polar spatial bins using DAISY configurations proposed in [14]. Next, the joint
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(dx, dy) gradient histogram in each spatial bin is captured directly into the de-
scriptor. CHoG histogram binning exploits the skew in gradient statistics that
are observed for patches extracted around keypoints. Finally, CHoG retains the
information in each spatial bin as a distribution. This allows the use of more
effective distance measures like KL divergence, and more importantly, enables
efficient quantization and compression. Typically, 9 to 13 spatial bins and 3 to
9 gradient bins are chosen resulting in 27 to 117 dimensional descriptors.

For compressing the descriptor, we quantize the gradient histogram in each
cell individually and map it to an index. The indices are encoded with fixed
length or entropy codes, and the bitstream is concatenated together to form
the final descriptor. Fixed-length encoding provides the benefit of compressed
domain matching at the cost of a small performance hit. In prior work [12, 1], we
have explored several schemes that work well for histogam compression: Huffman
Coding, Type Coding and optimal Lloyd-Max VQ. Here, we use Type Coding,
which is linear in complexity to the number of histogram bins and performs close
to optimal Lloyd-Max VQ. Readers are referred to [1] for details of the histogram
quantization and compression schemes.

4 Results

In Section 4.1, we evaluate the different compression schemes at the feature
level using Receiver Operating Characteristic (ROC) curves. In Section 4.2, we
compare transmitting CHoG descriptors to SIFT descriptors or JPEG images
over a 3G network in a real-world mobile visual application.

4.1 Feature Level Performance

For evaluating the performance of low bitrate descriptors, we use the two data
sets provided by Winder and Brown in their most recent work [14], Notre Dame
and Liberty. For algorithms that require training, we use the Notre Dame data
set, while we perform our testing on the Liberty set. From the distances between
matching and non-matching pairs of descriptors, we obtain a Receiver Operating
Characteristic (ROC) curve which plots correct match fraction against incorrect
match fraction. For a fair comparison at the same bitrate, we consider the Equal
Error Rate (EER) point on the different ROC curves for each scheme.

Figure 2 and Table 1 summarize the bitrate EER trade-off for different
schemes. The number of bits required to match the performance of 1024-bit
SIFT is presented in Table 1. For Table 1, note that complexity refers to the
number of operations required for compressing each descriptor.

First, we compare the 3 hashing schemes. We note that LSH requires about
1000 bits to match the performance of SIFT, which is close to the size of the
uncompressed descriptor itself. SSC and Spectral Hashing perform better than
LSH at low bitrates but suffer due to overtraining at high bitrates. At high rates,
there is a significant gap in performance between the uncompressed 1024-bit
SIFT descriptor and hashing schemes based on machine learning. An advantage
of hashing schemes is that they can be compared in the compressed domain
using look-up tables.
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Fig. 2. Comparison of EER versus bitrate for different SIFT compression schemes for
the Liberty data set. We observe that CHoG outperforms all other schemes.

For transform coding, we observe that the KLT scheme matches the perfor-
mance of SIFT at about 200 bits. The ICA transform scheme gives a 10-25%
reduction in bitrate at a fixed EER compared to the KLT scheme. The transform
coding schemes outperform hashing schemes by a significant margin.

The TSVQ compression at 20 bits performs poorly and does not come close
to the performance of SIFT. The PQ scheme performs best at low rates. The PQ
scheme requires about 160 bits to match the peformance of SIFT as also observed
by the authors in [10]. Both ICA and PQ schemes require a bitrate of 160 bits
to match the performance of SIFT. Note, however, for PQ at this bitrate, the
size of the codebook C=1024, and the scheme is an order of magnitude more
complex than transform coding.

Finally, we observe that CHoG outperforms all SIFT compression schemes.
Note from Table 1 that CHoG provides several key advantages: no training,
significantly lower complexity O(d), and compressed domain matching. The gain
in performance comes from using a more compact spatial footprint, KL distance
for comparisons and a highly efficient quantization and compression scheme. We
conclude that we can achieve better performance with CHoG, which is designed
taking compression into account, compared to compressing SIFT.

Scheme # of bits Training Complexity CDM

LSH 1000 × O(Nd)
√

SSC -
√

O(Nd)
√

S-Hash -
√

O(Nd)
√

KLT 200
√

O(d2) ×
ICA 160

√
O(d2) ×

PQ 160
√

O(Cd)
√

TSVQ -
√

O(BDd)
√

CHoG 60 × O(d)
√

Table 1. Results for different compression schemes. CDM is Compressed Domain
Matching. N is the number of hash-bits. d = 128 for SIFT schemes. C = size of
codebook for PQ scheme. B = breadth of TSVQ. D = depth of TSVQ.
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4.2 Image Retrieval Performance
We evaluate the performance of CHoG in a large scale mobile image retrieval
system. We use a database of one million CD, DVD and book cover images, and
a set of 1000 query images [15] exhibiting challenging photometric and geometric
distortions. The server retrieval pipeline is based on techniques proposed in [9].
More details can be obtained in [1]. Each image has 500 × 500 pixels resolution.
We define Classification Accuracy (CA) as the percentage of query images cor-
rectly retrieved. The data transmission experiments are conducted in a AT&T
3G wireless network, averaged over several days, with a total of more than 5000
transmissions at indoor locations where a image-based retrieval system would
be typically used.

Figure 3 compares schemes based on CHoG, SIFT and JPEG. For the JPEG
scheme, the bitrate is varied by changing the quality of compression. For SIFT,
we transmit uncompressed 1024-bit descriptors, and for CHoG, we transmit 60-
bit descriptors. For SIFT and CHoG, we sweep the CA-bitrate curve by varying
the number of descriptors transmitted. In Figure 3(left), we observe that the
amount of data for CHoG descriptors are an order of magnitude smaller than
JPEG images or SIFT descriptors, to achieve the same CA. In Figure 3(right),
we study the average end-to-end latency at the highest accuracy point for the
different schemes. We achieve approximately 2-4× reduction in system latency
with CHoG descriptors compared to JPEG images or uncompressed SIFT de-
scriptors.
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Fig. 3. Figure(left) compares birate-classification accuracy of different schemes. CHoG
descriptor data are an order of magnitude smaller compared to transmitting JPEG
images or uncompressed SIFT descriptors, at the same CA. Figure(right) compares
end-to-end latency for different schemes. Compared to SIFT and JPEG schemes, CHoG
achieves approximately 2-4× reduction in average system latency in a 3G network.

5 Conclusion

We perform a comprehensive survey of SIFT compression schemes and evaluate
them in a common framework. We achieve better performance with CHoG, which
is designed taking compression into account, compared to compressing SIFT.
The CHoG descriptor at 60 bits matches the performance of the uncompressed
1024-bit SIFT descriptor. We evaluate the performance of CHoG in a large-scale
mobile image retrieval system, and show that we can achieve 2-4× reduction
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in latency by transmitting CHoG descriptors compared to SIFT descriptors or
JPEG compressed images.
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