
Analysis of a Class of Tries with Adaptive
Multi-Digit Branching

Yuriy A. Reznik

RealNetworks, Inc.
2601 Elliott Avenue, Seattle, WA 98121

yreznik@acm.org

Abstract. We study a class of adaptive multi-digit tries, in which the
numbers of digits rn processed by nodes with n incoming strings are such
that, in memoryless model (with n →∞):

rn → log n

η
(pr.)

where η is an algorithm-specific constant. Examples of known data struc-
tures from this class include LC-tries (Andersson and Nilsson, 1993),
”relaxed” LC-tries (Nilsson and Tikkanen, 1998), tries with logarithmic
selection of degrees of nodes, etc. We show, that the average depth Dn of
such tries in asymmetric memoryless model has the following asymptotic
behavior (with n →∞):

Dn =
log log n

− log (1− h/η)
(1 + o (1))

where n is the number of strings inserted in the trie, and h is the en-
tropy of the source. We use this formula to compare performance of
known adaptive trie structures, and to predict properties of other possi-
ble implementations of tries in this class.

1 Introduction

Radix search trees or tries, introduced in late 1950’s by R. E. de la Briandeis [3]
and E. Fredkin [14] have long become one of the most basic and much appreciated
concepts in computer science. It is well known, that they enable access to n
variable-length strings in O(log n) time (on average), while using only O(n) of
space [15]. These fundamental properties remain in force for a large class of
statistical models [8, 5, 28], and are inherited by most of their modifications,
such as digital search trees [6, 13], Patricia tries [16], bucket tries [26, 15, 12],
and others [4]. Most of the original research on these structures has been done
in 1960s–70s.

Nevertheless, in recent years, tries have seen a resurgence of interest in con-
nection with several new modifications, allowing search operations to be executed
much faster, typically in O(log log n) time on average [1, 2, 18, 20, 10, 22, 25, 11].
The basic technique that enables such a speed up is called adaptive multi-digit
branching [1, 22].

s1

s3 s4 s5

s6 s7

s8

s2

(a) Binary trie:

s1

s3 s4 s5

s8 s9

s2

(b) LC-trie:

s1 s3

s4 s5

s8

s2

(c) 37.5%-sparse LC-trie:

0 1

00 01 10 11

000 001 010 011

0000

00000

0101

00
01 10

11

0000

00000

00000

010 011

000 111

0011

s1

s3 s4 s5

s6 s7

s9

s2

(d) Logarithmic trie: 0000

00000

1111

s9

s6 s7

0101

s9

s8

s6 s7

0101

Fig. 1. Examples of tries built from 9 binary strings: s1 = 00000 . . ., s2 = 00001 . . .,
s3 = 00011 . . ., s4 = 0010 . . ., s5 = 0011 . . ., s6 = 01000 . . ., s7 = 01001 . . ., s8 =
1010 . . ., s9 = 1100

The best known example of such a structure is a level compressed trie (or LC-
trie) of Andersson and Nilsson [1], which simply replaces all complete subtrees
in a trie with larger multi-digit nodes1 (see Fig. 1.a,b). Other known implemen-
tations include ”sparse” LC-tries of Nilsson and Tikkanen [19, 20], which allow
the resulting multi-digit nodes to have a certain percentage of empty positions
(see Fig. 1.c), tries with logarithmic branching [22, 25], etc.

To the best of our knowledge, only LC-tries have been thoroughly analyzed
in the past. First results, suggesting that the average depth DLC

n of LC-tries in
asymmetric memoryless model is O(log log n) and only Θ(log∗ n) if model is sym-
metric, were reported by Andersson and Nilsson [1, 2]. A more refined estimate
in the symmetric case: DLC

n ∼ log∗ n has been obtained by Devroye [10]. In the
asymmetric case, Devroye and Szpankowski [11], and Reznik [24] have inde-

1 It is assumed that multi-digit nodes can be represented by lookup tables, so the
time required to parse such a structure is still proportional to the number of nodes
in each particular path.

pendently arrived at the following expression: DLC
n = log log n

− log(1−h/h−∞) (1 + o(1))
where h and h−∞ are Shannon and Rényi entropies correspondingly [28]. Analy-
sis of the expected height (longest path length) of LC-tries in memoryless model
can be found in [10, 11].

At the same time, not much is known about other implementations of adap-
tive tries. Most relevant results in this direction include analysis of basic statistics
of multi-digit nodes [24, 25], and experimental data collected for some specific
implementations [19, 20]. Why useful by themselves, however, these results are
not sufficient for complete characterization of the average behavior of such struc-
tures.

In this paper, we offer a general analysis of a class of tries with adaptive
multi-digit branching in memoryless model, which, in various special cases, leads
to expressions of average depths for all above mentioned implementations. We
use these expressions to compare performance of these structures, and to predict
properties of other possible implementations of tries in this class.

2 Definitions and Main Results

Consider a set S = {s1, . . . , sn} of n distinct strings to be used for trie construc-
tion. For simplicity, we will assume that these strings contain symbols from a
binary alphabet Σ = {0, 1}.
Definition 1. A multi-digit trie with parameter r (r > 1): T (r) (S) over S is
a data structure defined recursively as follows. If n = 0, the trie is an empty
node. If n = 1 , the trie is an external node containing a pointer to a string
in S. If n > 1, the trie is an r-digit internal node containing pointers to 2r

child tries: T (r) (S 0r) , . . . , T (r) (S1r), constructed over sets of suffixes of strings
from S beginning with the corresponding r-digit words Sv = {uj | v uj = si ∈ S},
v ∈ Σr.

In the simplest case, when r = 1, this structure turns in to a regular binary
trie (see Fig. 1.a). When r is fixed, this structure is a 2r-ary trie, which uses
r-bits units of input data for branching. When r is variable, we say that this trie
belongs to a class of adaptive multi-digit tries. Below we define several important
implementations of such data structures.

Definition 2. An LC-trie TLC (S) over S is an adaptive multi-digit trie, in
which parameters r are selected to reach the first levels at which there is at least
one external or empty node: r = min

{
s :

∑
v∈Σs 1{|Sv| 6 1} > 1

}
.

Definition 3. An ε-sparse LC-trie T ε–LC (S) over S is an adaptive multi-digit
trie, in which parameters r are selected to reach the deepest levels at which the
ratio of the number of empty nodes to the total number of nodes is not greater
than ε: r = max

{
s : 1

2s

∑
v∈Σs 1{Sv = ø} 6 ε

}
.

Definition 4. A logarithmic trie T lg (S) over S is an adaptive multi-digit trie,
in which parameters r for nodes with n incoming strings are calculated using
r = dlog2 ne.

Examples of the above defined types of tries are provided in Fig.1. Observe,
that all input strings s1, . . . , sn inserted in a trie can be uniquely identified by
the paths from the root node to the corresponding external nodes. The sum of
lengths of these paths C(T) =

∑n
i=1 |si| is called an external path length of a

trie T , and the value D(T) = C(T)/n – an average depth of this trie.
In order to study the average behavior of tries we will assume that input

strings S are generated by a binary memoryless (or Bernoulli) source [7]. In this
model, symbols of the input alphabet Σ = {0, 1} occur independently of one
another with probabilities p and q = 1− p correspondingly. If p = q = 1/2, such
source is called symmetric, otherwise it is asymmetric (or biased).

Using this model, we can now define the quantity of our main interest:

Dn := E {D (T)} =
E {C (T)}

n
, (1)

where the expectations are taken over all possible tries over n strings when
parameters of the memoryless source (p and q) are fixed. Average depths of LC-,
ε-sparse, and logarithmic tries over n strings will be denoted by DLC

n , Dε–LC
n ,

and D lg
n correspondingly.

In order to consolidate analysis of these (and possibly many other) implemen-
tations of adaptive multi-digit tries, we will assume, that in memoryless model,
the numbers of digits rn assigned to their internal nodes with n incoming strings
have the following convergence (with n →∞):

rn → log n

η
(pr.) (2)

where η is an algorithm-specific constant.
For example, it is well known, that convergence (2) takes place for LC-

tries [21] (see also [9, 2]). In this case, the constant η becomes:

η LC = h−∞ , (3)

where h−∞ = − log min(p, q) is a special case of a Rényi’s entropy [28]. In a case
of ε-sparse LC-tries, an extension of analysis [25] suggests that: rn → log n

ηε–LC +
f(ε)

√
log n (pr.), where f(.) is a monotonic function, such that f(1/2) = 0, and

η ε–LC = hg , (4)

where hg = − log (
√

p q) is another constant depending on the probabilities of
the source. It is clear, that our model (2) is sufficient to describe ε-sparse LC-
tries with ε = 1/2. Finally, the behavior of logarithmic tries can obviously be
modelled by (2) with

η lg = log 2 . (5)

Our main result for a class of adaptive multi-digit tries is formulated in the
following theorem.

Theorem 1. Consider a class of adaptive multi-digit tries, in which the numbers
of digits rn processed by nodes with n incoming strings, in binary memoryless
model (with n →∞):

rn → log n

η
(pr.)

where η is a constant, such that: h < η 6 h−∞, where h = −p log p − q log q is
the Shannon’s entropy of the source, h−∞ = − log min(p, q), and it is assumed
that p 6= q.

Then, the average depth Dn of such tries over n strings is asymptotically
(with n →∞):

Dn =
log log n

− log (1− h/η)
(1 + o (1)) . (6)

3 Discussion

Using the result of Theorem 1 and the values of constants η for each respective
algorithm (3-5), we can now compare them. The results of such a comparison are
presented in Fig.2. For completeness, we also show the behavior of the average
depths of regular (binary) tries Dbin

n = 1
h log n + O (1) (cf. [15, 8, 27]).

0

1

2

3

4

0.2 0.4 0.6 0.8 1p

Dbin
n

log n

DLC
n

log log n

Dε–LC
n

log log n

D lg
n

log log n

Fig. 2. Comparison of tries in binary memoryless model with Pr(0) = p. Dbin
n , DLC

n ,
Dε–LC

n , and D lg
n denote average depths of binary, LC-, ”sparse” LC-, and logarithmic

tries correspondingly.

We first notice that when the source is nearly symmetric p → 1/2:

DLC
n

log log n
→ 0 ,

Dε–LC
n

log log n
→ 0 ,

D lg
n

log log n
→ 0 ,

which suggests that in a symmetric case, the average depths of these structures
should have a much smaller order. We already know that this is true for LC-tries
(whose depth in symmetric case is only O(log∗ n) [1, 10]), but now we can predict
such an effect for any adaptive trie with η → h (p → 1/2).

We next observe that behavior of LC-tries and their ”sparse” variants is
not very much different. Thus, by plugging their respective constants, it can be
shown that (with n →∞):

2 6 DLC
n

Dε–LC
n

6 max
p∈[0,1]

log(1− hg/h)
log(1− h−∞/h)

≈ 2.165367... ,

which suggests that sparse LC-tries should be approximately twice faster than
LC-tries, and that, contrary to the intuition, this ratio cannot be influenced
much by increasing ε.

We also observe that both sparse and dense LC-tries are much more sensitive
to the asymmetry of the source than regular tries. Thus, it can be seen that with
p → 0:

DLC
n / log log n

Dbin
n / log n

→∞ ,
Dε–LC

n / log log n

Dbin
n / log n

→∞ .

At the same time, the sensitivity of logarithmic tries on the asymmetry of the
source remains similar to one of regular tries. Thus, it can be shown that with
p → 0:

D lg
n / log log n

Dbin
n / log n

→ log 2 .

As obvious, logarithmic tries are the fastest among implementations that
we have considered so far. Using the fact that the number of branches in their
nodes is approximately equal to the number of passing strings, we can conjecture
that the amount of space required by logarithmic tries is O(n log log n), which
is slightly larger than O(n) space used by regular tries and LC-tries [15, 27, 2].

We conclude by pointing out that by using even larger nodes, e.g. with h <
η < log 2 in our model (2), it is possible to design tries that are faster than
logarithmic tries. However, the amount of space required by such tries becomes
Ω

(
n

log 2
η

)
, which in a practical world, might be too much of a price to be paid

for a relatively small (in this case, limited to a constant-factor) improvement in
speed.

4 Analysis

We start with deriving recurrent expressions for external path lengths of tries
with rn-digit nodes.

Lemma 1. Parameters Cn (average external path length of adaptive multi-digit
tries over n strings) in a binary memoryless model satisfy:

Cn = n +
n∑

k=2

(
n

k

) rn∑
s=0

(
rn

s

) (
psqrn−s

)k (
1− psqrn−s

)n−k
Ck; (7)

C0 = C1 = 0.

Proof. Consider an rn-digit node processing n strings. Assuming that each of its
2rn branches have probabilities p1, . . . , p2rn , and using the standard technique
for enumeration of Cn in tries [15, 6.3-3], we can write:

Cn = n +
∑

k1+...+k2rn =n

(
n

k1, . . . , k2rn

)
pk1
1 . . . pk2rn

2rn (C1 + . . . + C2rn) ,

= n +
n∑

k=0

(
n

k

) (
pk
1 (1− p1)

n−k + . . . + pk
2rn (1− p2rn)n−k

)
Ck. (8)

Recall now that our strings are generated by a binary memoryless source with
probabilities p, and q = 1− p. This means that:

pi = psiqrn−si , (9)

where si is the number of occurrences of symbol 0 in a string leading to a branch
i (1 6 i 6 2rn). Combining (8) and (9), we arrive at the expression (7) claimed
by the lemma. ut

In order to find a solution of (7) we will use the following, very simple tech-
nique. We already know, that for a class of our tries Dn = O(log log n), hence
we can say that Cn = ξn log log n and plug it in (7). Ultimately, this will give us
upper and lower bounds for the parameter ξ such that the recurrence (7) holds.
If these bounds are tight, then we have successfully deduced the constant factor
in the O(log log n) term.

We will need the following intermediate results. For simplicity, here and below
we use natural logarithms.

Lemma 2. Consider a sum:

f (n, θ, λ) =
n∑

k=2

(
n

k

)
θk (1− θ)n−k

k ln(λ + ln k) , (10)

where θ ∈ (0, 1), and λ > 1 are some constants. Then, there exists 0 < ζ < ∞,
such that for any n > 2:

nθ ln(λ + ln(nθ))− ζ 6 f (n, θ, λ) 6 nθ ln (λ + ln (1− θ + nθ)) . (11)

Proof. We start with a representation:

f (n, θ, λ) =
n∑

k=1

(
n

k

)
θk (1− θ)n−k

k ln(λ + ln k)− nθ(1− θ)n−1 ln λ

where the last term can be easily bounded by:

nθ(1− θ)n−1 ln λ 6 θe−1

(θ − 1) ln(1− θ)
ln λ =: ζ .

Next, by Jensen’s inequality for x ln(λ + ln x):

n∑

k=1

(
n

k

)
θk (1− θ)n−k

k ln(λ + ln k)

>
(

n∑

k=1

(
n

k

)
θk (1− θ)n−k

k

)
ln

(
λ + ln

(
n∑

k=1

(
n

k

)
θk (1− θ)n−k

k

))

= nθ ln(λ + ln(nθ)) .

where convexity for k > 1 is assured by picking λ > 1.
To obtain an upper bound we use Jensen’s inequality for − ln(λ+ ln(1+x)):

n∑

k=1

(
n

k

)
θk (1− θ)n−k

k ln(λ + ln k)

= nθ

n−1∑

k=0

(
n− 1

k

)
θk (1− θ)n−1−k ln(λ + ln(1 + k))

6 nθ ln

(
λ + ln

(
1 +

n−1∑

k=0

(
n− 1

k

)
θk (1− θ)n−1−k

k

))

= nθ ln (λ + ln (1− θ + nθ)) .

ut

Lemma 3. Consider a sum:

g (n, θ, α, β) =
n∑

k=0

(
n

k

)
θk (1− θ)n−k ln(α + βk) , (12)

where θ ∈ (0, 1), α, β > 0, and α > β. Then, for any n > 1:

ln(α− β(1− θ) + βθn) 6 g (n, θ, α, β) 6 ln(α + βθn) . (13)

Proof. We use the same technique as in the previous Lemma. By Jensen’s in-
equality for − ln(α + βx):

g (n, θ, α, β) 6 ln

(
α + β

n∑

k=0

(
n

k

)
θk (1− θ)n−k

k

)
= ln (α + βθn) .

The lower bound follows from Jensen’s inequality for x ln(α− β + βx):

g (n, θ, α, β) =
1

θ(n + 1)

n+1∑

k=1

(
n + 1

k

)
θk (1− θ)n+1−k

k ln (α− β + βk)

> 1
θ(n + 1)

(
n+1∑

k=1

(
n + 1

k

)
θk (1− θ)n+1−k

k

)
×

× ln

(
α− β + β

n+1∑

k=1

(
n + 1

k

)
θk (1− θ)n+1−k

k

)

= ln (α− β(1− θ) + βθn) .

It is clear, that convexity and continuity in both cases is assured when α > β > 0.
ut

We are now prepared to solve our recurrence (7). For simplicity we assume
that p > 1/2. Let Cn = ξn ln(λ + ln n), where λ > 1 is a constant. Then,
according to Lemma 2:

Cn = n +
rn∑

s=0

(
rn

s

) n∑

k=2

(
n

k

) (
psqrn−s

)k (
1− psqrn−s

)n−k
ξk ln(λ + ln k)

6 n + nξ

rn∑
s=0

(
rn

s

)
psqrn−s ln

(
λ + ln

(
n psqrn−s + 1− psqrn−s

))

= n + nξ

rn∑
s=0

(
rn

s

)
psqrn−s ln

(
λ + ln

(
n psqrn−s

)
+ ln

(
1 +

1
n psqrn−s

− 1
n

))
.

Next, by our assumed property (2), we can pick ε > 0, such that the proba-
bility that ∣∣∣∣rn − ln n

η

∣∣∣∣ 6 ε . (14)

holds true is 1 with n →∞. If we further assume that η 6 − ln q 2, then

n psqrn−s > n qrn > n q
ln n

η +ε = n1− lnq
η qε > qε .

and consequently:

ln
(

1 +
1

n psqrn−s
− 1

n

)
6 ln

(
1 + q−ε − 1

n

)
< ln

(
1 + q−ε

)
= O(ε) .

2 A case when η = − ln q = h−∞ corresponds to LC-tries. Smaller η correspond to
tries with larger nodes.

By incorporating this bound and using Lemma 3:

Cn 6 n + nξ

rn∑
s=0

(
rn

s

)
psqrn−s ln

(
λ + ln

(
n psqrn−s

)
+ ln

(
1 + q−ε − 1/n

))

= n + nξ

rn∑
s=0

(
rn

s

)
psqrn−s ln

(
λ + ln n + rn ln q + s ln(p/q) + ln

(
1 + q−ε − 1/n

))

6 n + nξ ln
(
λ + ln n− h rn + ln

(
1 + q−ε − 1/n

))
,

where h = −p ln p− q ln q is the entropy. Now, by applying (14), we have:

Cn 6 n + nξ ln
(

λ + ln n

(
1− h

η

)
+ h ε + ln

(
1 + q−ε − 1/n

))
,

and by plugging Cn = ξn ln(λ + ln n) in the left side of the above inequality, we
finally obtain:

ξ 6 1

− ln
(
1− h

η + λ+h ε+ln(1+q−ε−1/n)
ln n

)
+ ln

(
1 + λ

ln n

)

=
1

− ln
(
1− h

η

)
(
1 + O

(ε

ln n

))
. (15)

The procedure for finding a lower bound is very similar:

Cn = n +
rn∑

s=0

(
rn

s

) n∑

k=2

(
n

k

) (
psqrn−s

)k (
1− psqrn−s

)n−k
ξk ln(λ + ln k)

> n + nξ

rn∑
s=0

(
rn

s

)
psqrn−s log

(
λ + ln

(
n psqrn−s

))− ζ

= n + nξ

rn∑
s=0

(
rn

s

)
psqrn−s ln (λ + ln n + rn ln q + s ln(p/q))− ζ

> n + nξ ln (λ + ln n− h rn − q ln(p/q))− ζ ,

> n + nξ ln
(

λ + ln n

(
1− h

η

)
− hε− q ln(p/q)

)
− ζ ,

which (after plugging Cn = ξn ln(λ+lnn) in the right side) leads to the following
inequality:

ξ > 1− ζ/n

− ln
(
1− h

η + λ−hε−q ln(p/q)
ln n

)
+ ln

(
1 + λ

ln n

)

=
1

− ln
(
1− h

η

)
(
1 + O

(ε

ln n

))
. (16)

By combining our bounds (15) and (16) and taking into account the fact that
for any ε > 0, the probability that they both hold true is approaching 1 with
n →∞, we can conclude that:

ξ → 1

− ln
(
1− h

η

) (1 + o(1))

in probability.

References

1. A. Andersson and S. Nilsson, Improved Behaviour of Tries by Adaptive Branching,
Information Processing Letters 46 (1993) 295–300.

2. A. Andersson and S. Nilsson, Faster Searching in Tries and Quadtries – An Analysis
of Level Compression. Proc. 2nd Annual European Symp. on Algorithms (1994) 82–
93.

3. R. E. de la Briandeis, File searching using variable length keys. Proc. Western
Joint Computer Conference. 15 (AFIPS Press, 1959).

4. J. Clement, P. Flajolet, and B. Vallée, The analysis of hybrid trie structures. Proc.
Annual ACM-SIAM Symp. on Discrete Algorithms. (San Francisco, CA, 1998)
531–539.

5. Clement, J., Flajolet, P., and Vallée, B. (2001) Dynamic sources in information
theory: A general analysis of trie structures. Algorithmica 29 (1/2) 307–369.

6. E. G. Coffman Jr. and J. Eve, File Structures Using Hashing Functions, Comm.
ACM, 13 (7) (1970) 427–436.

7. T. M. Cover and J. M. Thomas, Elements of Information Theory. (John Wiley &
Sons, New York, 1991).

8. L. Devroye, A Note on the Average Depths in Tries, SIAM J. Computing 28 (1982)
367–371.

9. L. Devroye, A Note on the Probabilistic Analysis of PATRICIA Tries, Rand. Struc-
tures & Algorithms 3 (1992) 203–214.

10. L. Devroye, Analysis of Random LC Tries, Rand. Structures & Algorithms 19 (3-4)
(2001) 359–375.

11. L. Devroye and W. Szpankowski, Probabilistic Behavior of Asymmetric LC-Tries,
Rand. Structures & Algorithms – submitted.

12. R. Fagin, J. Nievergelt, N. Pipinger, and H. R. Strong, Extendible Hashing – A
Fast Access Method for Dynamic Files, ACM Trans. Database Syst., 4 (3) (1979)
315–344.

13. P. Flajolet and R. Sedgewick, Digital Search Trees Revisited, SIAM J. Computing
15 (1986) 748–767.

14. E. Fredkin, Trie Memory, Comm. ACM 3 (1960) 490–500.
15. D. E. Knuth, The Art of Computer Programming. Sorting and Searching. Vol. 3.

(Addison-Wesley, Reading MA, 1973).
16. D. A. Morrison, PATRICIA – Practical Algorithm To Retrieve Information Coded

in Alphanumeric, J. ACM , 15 (4) (1968) 514–534.
17. S. Nilsson and G. Karlsson, Fast IP look-up for Internet routers. Proc. IFIP 4th

International Conference on Broadband Communication (1998) 11–22.
18. S. Nilsson and G. Karlsson, IP-address look-up using LC-tries, IEEE J. Selected

Areas in Communication 17 (6) (1999) 1083–1092.

19. S. Nilsson and M. Tikkanen, Implementing a Dynamic Compressed Trie, Proc. 2nd

Workshop on Algorithm Engineering (Saarbruecken, Germany, 1998) 25–36.
20. S. Nilsson and M. Tikkanen, An experimental study of compression methods for

dynamic tries, Algorithmica 33 (1) (2002) 19–33.
21. B. Pittel, Asymptotic Growth of a Class of Random Trees, Annals of Probability

18 (1985) 414–427.
22. Yu. A. Reznik, Some Results on Tries with Adaptive Branching, Theoretical Com-

puter Science 289 (2) (2002) 1009–1026.
23. Yu. A. Reznik, On Time/Space Efficiency of Tries with Adaptive Multi-Digit

Branching, Cybernetics and Systems Analysis 39 (1) (2003) 32–46.
24. Yu. A. Reznik, On the Average Depth of Asymmetric LC-tries, Information Pro-

cessing Letters – submitted.
25. Yu. A. Reznik, On the Average Density and Selectivity of Nodes in Multi-

Digit Tries, Proc. 7th Workshop on Algorithm Engineering and Experiments and
2nd Workshop on Analytic Algorithmics and Combinatorics (ALENEX/ANALCO
2005) (SIAM, 2005).

26. E. H. Sussenguth, Jr. (1963) Use of Tree Structures for Processing Files, Comm.
ACM , 6 (5) 272–279.

27. W. Szpankowski, Some results on V-ary asymmetric tries, J. Algorithms 9 (1988)
224–244.

28. W. Szpankowski, Average Case Analysis of Algorithms on Sequences (John Wiley
& Sons, New York, 2001).

