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ABSTRACT 

The limitations of objective metrics such as PSNR in 
evaluating video quality are well known to experts but less 
know to general users. A video tool which exploits 
perceptual phenomena may report higher subjective 
quality but lower objective performance than a non-
perceptual tool. This presents a problem when describing 
the performance of a perceptually motivated algorithm to 
general users. We propose a method for extending existing 
objective metrics to account for perceptual factors such as 
viewing distance, ambient contrast, etc. After describing 
the proposed algorithm extension, we examine the 
objective results of the proposal and perform subjective 
viewing tests to confirm the behavior of the extended 
objective metrics. 

1. INTRODUCTION 
Video quality metrics are in use to evaluate quality of 
video compression, delivery and display. An important 
application is providing a summary of the performance of 
a video compression algorithm. Metrics range greatly in 
degree of sophistication from simple mean square error 
based comparison to a reference as with PSNR to 
sophisticated human visual system models, Barten [1], 
Visual Difference Predictor [2], Sarnoff Just Noticeable 
Difference [3] and others. Similarly metrics differ in their 
assumptions about an available reference image. The 
metrics mentioned above are full-reference requiring a full 
reference image for definition. The assumption of a 
reference image can be reduced as with reduced -
reference metrics or entirely eliminated with no- reference 
quality metrics.  

Limitations of PSNR as a visual quality metric have 
been well discussed in the technical community, for 
example in [4]. Objective metrics based on SSIM or MS-
SSIM [5] have become popular recently, but the basic 
SSIM metric does not provide significantly more 
information than a basic PSNR calculation. For example, 
the work in [6] derives the relation between PSRN and 
SSIM. Despite the known limitations, PSNR is commonly 
used to evaluate system performance and application such 
as tuning encoding parameters due to the simplicity and 
application to a narrow range of parameter changes. In a 
limited application such as deciding between tools in a 

video codec and when used by an expert aware of its 
limitations, PSNR can be a valuable tool.  

A problem arises when interacting with a less 
technical group. It is common to be asked about PSNR 
performance of a product when introducing it to the 
market place for instance. Academic references about the 
inadequacy of PSNR in capturing visual performance are 
of limited use when the customer demands a PSNR 
number. For example, it is well known that visual 
perception phenomena can be exploited to improve the 
performance of a compression system. Invisible but 
complex detail can be removed reducing the necessary 
bitrate to achieve similar subjective quality. As an 
example, the oblique effect, in which a viewer is less 
sensitive to diagonal frequency that to frequency in the 
cardinal directions, has been exploited to remove diagonal 
high frequency content to simplify encoding without 
impact on perceived quality [7]. Such perceptually 
invisible modifications to an image will degrade a simple 
objective metric such as PSNR. Thus, focus on an 
objective metric such as PSNR may mask the benefits of 
perceptual processing. We are faced with the following 
problem: how to use the language of traditional PSNR 
familiar to the customer while communicating the 
performance benefits of system exploiting perceptual 
effects. One obvious limitation of PSNR is not accounting 
for viewing conditions. 

To address above described problem, we introduce a 
method for incorporating viewing conditions, particularly 
viewing distance, with existing objective metric 
calculations. This technique is applied to PSRN, SSIM, 
and MS-SSIM and compared to the results or subjective 
MOS tests performed over same content and parameters 
of viewing setup. It is shown that adapted versions of 
PSNR, SSIM, and MS-SSIM show similar behavior as 
MOS scores with changing viewing conditions. 

The remaining sections of this paper are organized as 
follows. Section 2 provides a description of the 
modifications of traditional PSNR to account for 
perceptual factors of display contrast and viewing 
distance. Section 3 provides results of extended objective 
metrics computed for example sequences and viewing 
conditions. Section 4 presents results on subjective testing 
on the same data use for objective calculations. Section 5 
provides our conclusions. 



2. ALGORITHM DETAILS 
2.1. Fundamentals 

It is well known that the perception of visual quality 
depends upon the viewing conditions. In this paper we 
focus on the subjects viewing distance as a primary 
viewing condition factor. In psychophysics evaluations the 
viewing distance is often expressed as a number of picture 
heights rather than physical units. The contrast sensitivity 
function (CSF) defines for a given viewing distance the 
minimum contrast needed for a spatial modulation to be 
visible. The spatial modulation is described by a 
frequency in cycles per visual angle. Mathematical models 
of the CSF are commonly included in advanced visual 
models and quality metrics. A detailed mathematical 
model of the CSF is given in [8]. An example plot of a 
contrast sensitivity function is shown in Figure 1 with 
indications of the visible and invisible regions of contrast 
for various spatial frequencies measured in cycles per 
degree of visual angle. 
 

   
Figure 1 Contrast Sensitivity Plot 

2.2. System Diagram 
A diagram of the algorithm defining the extension of an 
objective metric to include viewing condition dependence 
is shown in Figure 2. We assume an objective metric 
M(.,.) for computing a full reference image quality metric 
is given for instance M could be PSNR or SSIM. A 
description of viewing conditions is given in the form of a 
display contrast ratio C accounting for ambient and 
viewing distance D. The contrast is used to determine a 
cut-off frequency above which image modulations are 
invisible since the display is unable to achieve contrast 
high enough for the visual system to distinguish. Using 
the viewing distance, the cut-off frequency is converted 
from cycles per visual degree to cycles per pixel. A low 
pass filter, F, is designed with this cut-off frequency. The 
reference image 𝐼𝐼𝑟𝑟𝑟𝑟𝑟𝑟 and the image under evaluation 𝑰𝑰𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 
are each filtered to produce modified images.  
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Figure 2 System diagram extending metric M to 

include viewing conditions in metric MP 

The proposed extended objective metric MC,D(.,.) is 
defined as the given objective metric M(.,.) evaluated on 
the filtered reference and filtered test images. This process 
is summarized in Eq. (1).  
 

𝑀𝑀𝐶𝐶,𝐷𝐷�𝐼𝐼𝑟𝑟𝑟𝑟𝑟𝑟, 𝐼𝐼𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡�  ≡  𝑀𝑀�𝐹𝐹𝐶𝐶,𝐷𝐷�𝐼𝐼𝑟𝑟𝑟𝑟𝑟𝑟�,𝐹𝐹𝐶𝐶,𝐷𝐷(𝐼𝐼𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)�  (1) 
 

In the above formula, 𝑭𝑭𝑪𝑪,𝑫𝑫(𝑰𝑰) is the result of filtering the 
image 𝑰𝑰 with a low pass filter 𝑭𝑭𝑪𝑪,𝑫𝑫 designed based on the 
viewing conditions described by contrast and viewing 
distance. 

2.3. Cut-off frequency determination 
One of the important characteristics of video reproduction 
setup is the contrast ratio achievable by the display under 
certain ambient lighting conditions. Given a finite contrast 
ratio, the highest frequency which is visible under a given 
CSF and viewing distance can be determined. The contrast 
ratio defines a maximum contrast achievable for any 
image shown on the display. The limit on display contrast 
determines a lower bound on the contrast sensitivity 
achievable by the display. Spatial frequencies above the 
cut-off frequency require contrast levels greater than that 
achievable on the display to be visible. Thus given a 
display contrast ratio we can determine a cut-off 
frequency beyond which detail will not be visible. This 
concept is illustrated in Figure 3. Three regions of pairs 
(spatial frequency, contrast sensitivity) are indicated. The 
region above the CSF curve is invisible to the viewer. The 
region below the CSF curve is visible. The visible region 
with sensitivity below the minimum display sensitivity 
cannot be achieved on a display and is indicated as 
infeasible. The minimum sensitivity and the highest 
visible spatial frequency are linked by the CSF. 
Mathematically, the upper bound on the display contrast C 
determines a lower bound on the achievable contrast 



sensitivity. The CSF then relates the lower bound on 
sensitivity to an upper bound on visible frequency.  
 

 
Figure 3 Relating minimum sensitivity and 
maximum visible frequency via the CSF 

An appendix provides details on the inversion of the 
CSF model. We use an approximation of the inverse CSF 
model for determining the cut-off frequency fc from the 
maximum contrast Cmax achievable on the display in a 
given ambient environment.  
 

2.4. Visual frequency conversion 
The spatial frequency 𝑓𝑓𝑐𝑐′(𝑠𝑠) given by the inverse CSF is in 
units of cycles per visual degree. For use in image 
processing these need to be converted to pixel specific 
units. The conversion between visual angle and pixels 
relies upon the viewing distance and display pixel density 
i.e. ppi. The relevant geometry is shown in Figure 4.  

 

 
Figure 4 Geometry relating visual angle, viewing 

distance and cycle length 

The spatial frequency f of a sinusoidal grating with 
cycle length n pixels can be computed as: 

𝑓𝑓 = 1
𝛽𝛽

 [𝑐𝑐𝑐𝑐𝑐𝑐],𝛽𝛽 = 2 tan−1 � 𝑛𝑛
2𝑑𝑑𝑑𝑑

�, (3) 
where the distance from viewer to display is d inches. The 
visual angle corresponding to this cycle is 𝛽𝛽 degrees. The 
display density is 𝜌𝜌 ppi. When the viewing distance is 
expressed in pixels this conversion from inches to pixels 
using the pixel density is not needed. 

2.5. A synthetic example 
A clear limitation of PSNR can be seen in comparing the 
images shown in Figure 5. Both are full HD images, 
1920x1080, consisting of columns of full white or full 
black pixels. Image A, consists of alternating full black 
and full white columns beginning with white. Image B 
consists of alternating columns of full black and full white 
columns beginning with black. Thus image B differs from 
image A by a 1-pixel horizontal translation. The 
difference is invisible unless carefully controlled viewing 
with the images flipping between A and B is done. For 
practical purposes A and B are subjectively identical. 
Example images of A and B are included in this document 
but cannot be distinguished.  

Image A (full)

 

Image B (full)

 
Image A (four columns)

 

Image B (four columns)

 
Figure 5 Images A and B full size and zoomed 

Computing the PSNR between A and B gives a 
different conclusion. The MSE difference between A and 
B is maximum i.e. no other image pair can have higher 
MSE. Thus the PSNR between A and B is the absolute 
smallest possible for an image pair. If using 8-bit images 
the MSE becomes maximal 2552 and the PSNR becomes 
zero. 

Table 1 Objective metric values 

Frequency PSNR SSIM MS-SSIM 
1. 0000 0.0000 -0.9964 -0.9964 
0.8408 31.8282 0.6443 0.9805 
0.7072 37.7853 0.9815 0.9991 
0.5946 39.2811 0.9821 0.9991 
0.5000 40.4581 0.9824 0.9991 

  
For purposes of illustration we apply low pass filters 

of various cut-off frequencies prior to calculation of the 
PSNR, SSIM and MS-SSIM using the implementation 
provided at [11]. The value calculated for metric at each 
cut-off frequency is given in Table 1. If we compute the 
objective metrics for various low-pass cut-off frequencies, 
we quickly converge to a more representative difference 
for images which are subjectively identical. 
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For this extreme synthetic example, the viewing 
condition adaptivity restores some meaning to existing 
objective metric calculations by increasing to high quality 
as the viewing distance increases where the images are 
subjectively identical. We note that although MS-SSIM 
includes several low-pass filter stages to produce multiple 
resolutions, MS-SSIM reports a low value on this image 
pair unless preprocessing is used.  

3. OBJECTIVE EVALUATION 
We demonstrate example calculation of P-PSNR on 
sample content and varying viewing conditions. An 
effective display contrast of 100:1 was used with different 
viewing distances. 

3.1. Methodology 
Source material was generated by using two well-known 
full HD, 1920x1080, sequences from the video coding 
community “ParkScene” and “Kimono”. Each was 
encoded using the open source x264 encoder [9] with 
three fixed quantization levels QP = 26, 32, 38 giving a 
range of compression quality and artifacts. Each sequence 
was decoded to provide six sample video sequences, two 
content at three encoding levels each. 

A range of viewing distances in picture heights was 
selected to sweep the distance parameter. For each 
viewing distance, an appropriate cut-off frequency was 
selected based on a CSF model and assumed display 
contrast ratio of 100:1. The list of distances and 
corresponding cut-off frequencies is shown in Table 2. 

Table 2 Distance Cut-Off Frequencies 

Distance 
(PH) 

Cut-Off 
Frequency 

1 1.0000 
3 1.0000 
5 0.7646 
7 0.5461 
9 0.4248 

11 0.3475 
13 0.2941 

 

Three objective metrics PSNR, SSIM, and MS-SSIM 
were computed at each distance between filtered original 
and filtered decompressed images giving the perceptual 
extensions P-PSNR, P-SSIM and P-MS-SSIM 
respectively.  

3.2. Results 
The extensions of PSNR, SSIM and MS-SSIM are plotted 
as a function of viewing distance for three different 
compressed versions of the “ParkScene” sequence and 
“Kimono” sequences in Figure 6, Figure 7 and Figure 8 
respectively. We observe that the metrics all increase with 

viewing distance for both of these sequences under all 
three coding conditions QP = 26, 32, 38. 

  
Figure 6 P-PSNR versus distance 

  
Figure 7 P-SSIM versus distance 

  
Figure 8 P-MS-SSIM versus distance 

We note that MS-SSIM contains filtering and 
subsampling which appear similar to use of the viewing 
condition driven filtering prior to the objective metric 
calculation. Note however that MS-SSIM does not have 
an adaptation to viewing conditions rather the same multi-
resolution derivation of calculations used regardless of 
viewing conditions. 

The PSNR rises without bound as the distance 
increases. The SSIM and MS-SSIM metrics increase 
toward saturation as the distance parameter increases. This 
saturation of quality is more representative of the expected 
property. The lower quality versions increase more rapidly 
than the higher quality versions of the sequence. 

4. SUBJECTIVE EVALUATION 
We investigate the subjective quality of the same 
compressed video sequences in a viewing test. Sixteen 
(16) viewers were used to rate the subjective quality of the 
video under different viewing distances. Nine (9) were 
imaging experts while the remaining seven (7) were 
viewers without specific experience in image quality 
evaluation.  



4.1. Methodology 
For testing, each of the compressed sequences was used 
without filtering. Subjects were asked to rate the quality of 
video using the five point scale Table 3. Prior to scoring, 
subjects where shown a video sequence encoded with low 
quantization QP=20 and told this was an example of 
excellent quality. The same video sequence encoded with 
high quantization QP=40 was shown as an example of 
Bad quality.  

Table 3 Quality Scale 

5 Excellent 
4 Good 
3 Fair 
2 Poor 
1 Bad 

  
During evaluation subjects were placed at three 

different viewing distances 3H, 5H and 9H from the 
display. At each distance, the subjects were shown the six 
compressed sequences in a random order and asked to 
provide a score. Sony LMD-941W reference monitor was 
used in our tests.  

4.2. Results 
Results of the subjective voting are shown below. Results 
for individual sequences are shown with subjective quality 
versus viewing distance plotted for three quantization 
levels QP 26, 32, 38. 

We observe some trends in this subjective data. 
Looking at the ParkScene results in Figure 9, the 
subjective quality scores converge with increasing 
viewing distance. For low quality sequences at QP=38 the 
subjective score rises with increasing viewing distance 
presumably because compression artifacts are less visible 
and distract less from the quality. The higher quality 
sequences both decline slightly in subjective quality but 
tend to converge at the extreme viewing distance. Looking 
at the Kimono results in Figure 10, the lowest quality 
encoding, QP=38, increases in subjective score as the 
viewing distance increases. The higher quality encodings 
are nearly constant with the note that the qualities 
converge at the farthest viewing distance. Interestingly, 
the subjective quality of high quality encodings falls as the 
viewing distance increases. The extremely high P-PSNR 
values > 40 don’t translate to improvement in subjective 
quality for images already having high subjective quality. 
In this case, significant compression artifacts are not 
visible even at the closest distance. When viewed at a 
higher distance, the content has less visible detail and 
hence is rated lower. An interesting question is how 
subjects account for different distance when providing 
subjective ratings. We did not make an attempt to 
investigate this in detail as we are focusing on use cases 

where compression artifacts are noticeable at close 
viewing distance. For both sequences, the subjective 
quality scores of fine and coarsely quantized data 
converge at longer viewing distance suggesting inability 
to differentiate between different levels of compression at 
these distances. 
 

 

 
Figure 9 Subjective quality versus viewing distance 

“ParkScene” 

 
Figure 10 Subjective quality versus viewing 

distance ”Kimono” 

 

5. CONCLUSIONS 
A method for incorporating viewing conditions with a full 
reference objective video quality metric was proposed. 
The method relies on using a low pass-filter to account for 
viewing distance. This can be effective in cases where the 
metric does not contain the ability to vary viewing 
conditions or when the viewing condition parameters 
cannot be modified in a particular implementation.  

We have shown the effectiveness of the proposed 
method by producing perceptually-adapted versions of 
PSNR, SSIM, and MS-SSIM and by comparing their 
outputs to MOS scores produced by human observers. It is 
shown that with our proposed modifications those metrics 
correlate better with the MOS scores. The variations in 
scores with viewing condition are otherwise absent.  
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APPENDIX: CALCULATION OF CUT-OFF 
FREQUENCY 
A practical display has a limit on the achievable contrast 
under particular ambient viewing conditions. A CSF 
model relates this minimum contrast sensitivity to a 
maximum visible spatial frequency defined as the highest 
frequency where the CSF exceeds this minimum 
sensitivity.  

The cut-off frequency is computed as follows: 
1) Determine the maximum contrast achievable on 

the display on the display under existing 
conditions, Cmax 

2) The minimum sensitivity Smin = 1/ Cmax 
3) Find the solution of S’(u) = Smin. This defines the 

cut-off frequency. 

To determine the frequency at which Smin is achieved, 
a mathematical model of the human contrast sensitivity 
function developed by Barten [8] is summarized below. 
The sensitivity threshold of a spatial frequency of u cycles 
per degree is given by: 

𝑆𝑆(𝑢𝑢) =
𝐴𝐴𝑒𝑒−𝐷𝐷𝑢𝑢2

�(𝐵𝐵 + 𝑢𝑢2) �𝐶𝐶 + 1
1 − 𝑒𝑒−0.002𝑢𝑢2�

 

Where constants A, B, C, D are defined below in terms of 
the object luminance L, the object size 𝑋𝑋0. 
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5200𝐸𝐸
√0.64

𝐵𝐵 =
1

0.64�
1 +

144
𝑋𝑋02

�

𝐶𝐶 =
63
𝐿𝐿0.83 𝐷𝐷 = 0.0016�1 + 100

𝐿𝐿� �
0.08

𝐸𝐸 = 𝑒𝑒𝑒𝑒𝑒𝑒

⎝

⎜
⎛
−
𝑙𝑙𝑙𝑙2 �𝐿𝐿𝑠𝑠𝐿𝐿 

�1 + 144
𝑋𝑋𝑜𝑜2

�
0.25

� − 𝑙𝑙𝑙𝑙2 ��1 + 144
𝑋𝑋𝑜𝑜2

�
0.25

�

2 𝑙𝑙𝑙𝑙2(32)

⎠

⎟
⎞

 

For large u, this can be approximated by 

𝑆𝑆1(𝑢𝑢) =
𝐴𝐴𝑒𝑒−𝐷𝐷𝑢𝑢2

�(𝐵𝐵 + 𝑢𝑢2)(𝐶𝐶 + 1)
 

This model is a function of the viewing conditions. For 
given viewing conditions, the display brightness and size 
determine the constants L and X0. Thus the function 𝑆𝑆1(𝑢𝑢) 
is determined.  

Function 𝑆𝑆1(𝑢𝑢) can be analytically inverted to give: 
 

𝑢𝑢 = 𝑆𝑆1−1(𝑠𝑠) =  �
𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 �2𝐷𝐷𝐴𝐴2𝑒𝑒2𝐷𝐷𝐷𝐷

(𝐶𝐶 + 1)𝑠𝑠2 �

2.𝐷𝐷
 

where 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝑧𝑧) is a solution of equation: 

 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝑧𝑧). 𝑒𝑒𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝑧𝑧) = 𝑧𝑧  This relates the minimum sensitivity achievable on the 
display to the highest visible frequency through the CSF 
model. A plot summarizing this inverse relation is shown 
below. Three regions are identified: points above the CSF 
cannot be seen by the viewer, points below the CSF are 
visible, points to the left of the minimum sensitivity are 
infeasible, limits on the display contrast prevent these 
sensitivity levels from being displayed. 
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by display 
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