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Abstract— This paper describes a video coding technology 

proposal submitted by Qualcomm in response to a joint call for 
proposal (CfP) issued by ITU-T SG16 Q.6 (VCEG) and 
ISO/IEC JTC1/SC29/WG11 (MPEG) in January 2010. The 
proposed video codec follows a hybrid coding approach based 
on temporal prediction, followed by transform, quantization 
and entropy coding of the residual. Some of its key features 
are extended block sizes (up to 64×64), single pass switched 
interpolation filters with offsets, mode dependent directional 
transforms for intra-coding, luma and chroma high precision 
filtering, geometric motion partitions, adaptive motion vector 
resolution and efficient 16 point transforms. It also 
incorporates internal bit-depth increase and modified quadtree-
based adaptive loop filtering. Simulation results are presented 
to demonstrate the high compression efficiency achieved by 
the proposed video codec at the expense of moderate increase 
in encoding and decoding complexity compared to the 
AVC/H.264 standard. For the Random Access and Low Delay 
configurations, it achieved average bit rate reductions of 
30.9℅ and 33.0℅ for equivalent PSNR, respectively, 
compared to the corresponding AVC anchors. The proposed 
codec scored highly in both subjective evaluations and 
objective metrics and was among the best-performing CfP 
proposals. 
 

Index Terms — Geometric motion partitions, MDDT, adaptive 
motion vector resolution, switched interpolation filters with 
offsets, video coding 

I. INTRODUCTION 

This paper describes a video coding technology proposal 
submitted by Qualcomm in response to a joint call for proposal 
(CfP) [1], [2] issued by ITU-T SG16 Q.6 (VCEG) and 
ISO/IEC JTC1/SC29/WG11 (MPEG) in January 2010. Details 
regarding the CfP process, test set, coding constraint 
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conditions, subjective evaluation methodology, the 
AVC/H.264 [3], [4] anchors used, etc. can be found in the 
introduction to the special section on the call for proposals on 
high efficiency video coding standardization of this issue [5]. 
Qualcomm’s proposal [6] scored highly in both subjective 
evaluations and objective metrics and was among the best-
performing CfP proposals. Some of the key features of 
Qualcomm’s proposal are block sizes larger than the 
traditional 16×16 macroblock structure, transforms of sizes 
16×16, 16×8, and 8×16, in addition to 4×4 and 8×8, mode 
dependent directional transforms (MDDT) for intra-coding, 
luma high precision filtering, single-pass switched 
interpolation filters with offsets (single-pass SIFO), geometric 
motion partitions, adaptive motion vector resolution, and 
efficient 16 point transforms. 

The proposed video codec utilized some coding tools 
proposed by other companies and adopted into the JM Key 
Technology Areas (JMKTA) software [7] such as internal bit-
depth increase (IBDI) [8], and modified quadtree-based 
adaptive loop filtering (QALF) [9]. Several other tools such as 
chroma high precision filtering, direct mode for P slices, 
motion vector scaling, and changes to the AVC/H.264 mode 
syntax for B slices were also included in the proposed video 
codec. However, due to a limitation of space, these techniques 
will not be described in this paper. Interested readers are 
referred to [6] for a complete description of these techniques. 

The rest of this paper is organized as follows. In Section II, 
the details of the key features of the proposed codec are 
provided in the context of the different functional blocks. In 
Section III, experimental results are presented. The 
performance of the proposed video codec is evaluated under 
low delay and random access conditions. The coding results 
are compared to the AVC/H.264 anchors provided by the CfP. 
Results of subjective evaluations and complexity comparisons 
are also provided. Finally, conclusions are presented in 
Section IV. 

II. CODEC DESIGN 

The proposed codec is based on the traditional hybrid 
coding approach, utilizing motion-compensated temporal 
prediction between video frames as well as intra-frame 
prediction, followed by 2-D transformation of the spatial 
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residual signals, quantization, and entropy coding. The codec 
operates in a closed-loop and uses deblocking as well as 
quadtree-based adaptive loop filtering. The different functional 
blocks of the proposed codec are discussed in greater detail in 
the following subsections.  

A. Intra-block coding 

Intra-prediction used in the proposed video codec is 
identical to that of AVC/H.264. For the 4×4 and 8×8 block 
sizes, 9 prediction modes are used and for the 16×16 block 
size, 4 prediction modes are used. It is observed that after 
performing intra-prediction using the AVC/H.264 prediction 
modes, there is still significant directional information left in 
the prediction residual. To exploit this, the proposed codec 
uses mode dependent directional transforms (MDDT) and 
adaptive coefficient scanning to maximally compact the intra-
prediction residual energy and increase the entropy coding 
efficiency, as described in the following subsections. 
1) Mode dependent directional transforms for intra-
prediction residuals 

To exploit the directionality of the intra-prediction 
residuals, the proposed video codec uses mode dependent 
directional transforms (MDDT). Since the transform is 
dependent on the mode, no side information is necessary, 
which is rather important for the smaller block sizes such as 
4x4 and 8x8. MDDT was first proposed in [10], [11]. We 
briefly describe the design and implementation of the MDDT. 

MDDT is based on the Karhunen-Loève transform (KLT). 
Ideally KLT derived from the statistics of the intra-prediction 
residuals for a particular intra-prediction mode would be the 
optimal choice from a rate-distortion perspective for that 
mode. However, for a 2-D residual block, KLT is a non-
separable transform. For an NN ×  block, the KLT matrix size 

is 22 NN × . Thus, KLT is prohibitively expensive in terms of 
storage and computational requirement. Our proposed video 
codec uses a separable NN ×  directional transform, which 
can be described as 

ii RXCY =  (1) 

where iC  and iR  are the column and row transform matrices 

for the intra-prediction mode i, respectively. Singular Value 
Decomposition (SVD) is applied to the training set of intra-
prediction residuals for a particular intra-prediction mode i, 
first in the row direction, and then, in the column direction to 
determine the transform matrices iC  and iR . The proposed 

codec uses fixed-point approximations of the transform 
matrices. The training set used to design the MDDT matrices 
consisted of QCIF and CIF sequences. It did not include any of 
the sequences from the CfP test set.  
2) Adaptive coefficient scanning 

After applying a transform to the intra-prediction residuals, 
the 2-D transform coefficient matrix is converted into a 1-D 
array. In AVC/H.264, zigzag scanning order is used so that the 
lower frequency coefficients are positioned earlier in the scan. 
However, in the case of MDDT, even after separable 
directional transform is applied, the resulting 2-D transform 

coefficient matrix has some directionality. For example, 
consider the vertical prediction mode (mode 0). After intra-
prediction, transform and quantization, the non-zero 
coefficients tend to exist along the horizontal direction. By 
using a coefficient scanning process oriented in the horizontal 
direction instead of the zigzag scan, the non-zero coefficients 
in the 2-D matrix can be positioned towards the beginning of 
the 1-D array. This, in turn, improves the entropy coding 
efficiency. Quantized transform coefficients corresponding to 
different intra-prediction modes carry different statistics. 
Therefore, for each mode, adaptive coefficient scanning is 
used. This is accomplished as follows: 

1. At the beginning of each video slice, the coefficient 
scanning order for each intra-prediction mode is initialized. 

2. For each non-zero coefficient coded, the count at the 
corresponding position is incremented by one. 

3. After each macroblock is coded, the coefficient scanning 
order is updated according to the count statistics collected. 

4. The collected count statistics are scaled down if the 
maximum count exceeds a threshold. This gives more 
importance to the recent past, resulting in better adaptivity. 

5. The updated scanning order is used for the coding of the 
future blocks. The control returns to step 2 until the encoding 
of the slice is completed. 

The initialization is performed based on the probability of 
each transform coefficient being non-zero. The scanning order 
is initialized in the decreasing order of the probability of a 
coefficient being non-zero. The probabilities are derived from 
the same training set used in the design of the MDDT matrices. 

B. Inter-block coding 

The proposed video codec introduces a number of coding 
tools to improve the inter-block coding efficiency. Extended 
block size motion partitions and geometric motion partitions 
are introduced to better align the motion partition to the video 
content. Also, the use of higher precision motion vector 
representation and improved sub-pixel interpolation, further 
improve the efficiency of motion compensation. 
1) Extended block size motion partition 

For higher resolution sequences such as 720p and 1080p, it 
is much more likely that spatial areas larger than 16×16 have 
homogeneous motion. Thus, it is advantageous to allow for 
motion partition sizes larger than 16×16. Such an extended 
block size motion partitioning scheme was proposed in [12] 
and has been adopted by JMKTA. The proposed video codec 
uses this scheme where the largest motion partition size is set 
to 64×64. At 64×64 block size, motion partitions of 64×64, 
64×32, 32×64, and 32×32 are permitted. If the motion 
partition of 32×32 is chosen, each 32×32 block can have 
motion partitions of 32×32, 32×16, 16×32, and 16×16. If a 
16×16 partition is chosen at the 32×32 block level, each 
16×16 block can be further partitioned in accordance with the 
existing motion partition sizes in AVC/H.264 (16×16, 16×8, 
8×16, 8×8, 8×4, 4×8, and 4×4). In addition, for the 64×64 and 
32×32 blocks, skip and direct modes are also used as in the 
case of 16×16 macroblocks in AVC/H.264. 
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In the proposed codec, the motion partition is determined by 
performing a bottom-up search. First the minimum rate-
distortion (RD) cost for each 16×16 macroblock is determined. 
Then the combined RD cost for 4 16×16 blocks is compared 
with the RD costs for 32×32, 32×16, and 16×32 partitions. By 
choosing the minimum RD cost, we obtain the optimal 
partition for the 32×32 block. This process is repeated for the 
4 neighboring 32×32 blocks, to obtain the optimal motion 
partition for the 64×64 block. It should be noted that if the best 
motion partition contains 16×16 blocks, then the 16×16 blocks 
may be intra-coded. 
2) Geometric motion partitions 

In AVC/H.264, a translational motion model is assumed for 
rectangular blocks. But this model is not accurate when a 
motion boundary is present within a rectangular block. This 
problem is exacerbated when extended block size motion 
partitions are used. One way to overcome this problem is to 
divide a block containing a motion boundary into smaller 
rectangular blocks so that the motion boundary affects only a 
few of the smaller blocks. But in this case, the number of 
motion vectors that are needed to be sent to the decoder is 
much larger, resulting in higher rate. Another solution that was 
proposed in [13], [14] is to use another kind of motion 
partitioning known as geometric motion partitions. This 
motion partitioning divides the block into 2 regions. The 
boundary separating the 2 regions is defined by a straight line. 
One motion vector is sent for each region. In our proposed 
codec, geometric motion partition is introduced at block sizes 
of 64×64, 32×32 and 16×16.  

The geometric motion partitions are created as follows. The 
origin is assumed to be at the center of the block. Then, each 
geometric partition is defined by a line passing through the 
origin that is perpendicular to the line defining the partition 
boundary. This is shown in Fig. 1. The geometric partition is 
defined by the angle subtended by the perpendicular line with 
the X axis )(θ  and the distance of the partition line from the 

origin )(ρ . The equation of the line defining the partition 

boundary can be specified as 

cxmxy +=+−=
θ

ρ
θ sintan

1
 

(2) 

We use two 32 bit lookup tables, one to store the slope, 
θtan1− , and the other to store the scaled Y-intercept, 

θsin1− . The region to which each pixel belongs is calculated 

on the fly. 
For each block size, 32 different values of θ  are permitted 

(from 0 to 360 in steps of 11.25). The number of different 
values for ρ  depends on the block size. For the block size of 

16×16, ρ  can take 8 possible values (0 - 7). For block sizes 

of 32×32 and 64×64, ρ  can take 16 and 32 possible values, 

respectively. Thus, for block sizes of 16×16, 32×32, and 
64×64, there are 256, 512, and 1024 possible geometric 
partitions, respectively. 

a) Motion search for geometric motion partitions 

Since there are so many possible geometric partitions for 
each block size, it is prohibitively expensive for the encoder to 
do motion estimation for each region of each geometric 
partition and then, perform rate-distortion optimization. To 
overcome this difficulty, whenever possible, motion vectors 
from the rectangular partitions at all block sizes are reused to 
speed-up the motion vector search for geometric partitions. 
The encoder is structured in such a manner that the motion 
estimation for all the rectangular motion partitions is 
performed before the motion search for the geometric 
partitions. For each geometric partition region, we find the 
largest rectangular block that lies entirely inside the region and 
for which a motion vector is available. The estimated motion 
vector for that block is used as the motion vector for the 
partition region. If there are multiple blocks of the same size 
that lie entirely inside the region, the first block in the scan 
order is chosen. Fig. 2 shows an example of this process. 
Suppose that we are interested in calculating the RD cost of a 
geometric motion partition represented by the line shown in 
Fig. 2. In that case, for the region above the line, the 4×8 block 
is the largest block for which a motion vector is already 
available. The motion vector for the 4×8 block is assigned to 
the region above the line. Similarly the motion vector for the 
8×8 block shown in Fig. 2 is assigned to the geometric 
partition region below the line. If a geometric partition at 
block size of 16×16 is being considered, all the blocks of sizes 
16×8, 8×16, 8×8, 8×4, 4×8, and 4×4 are considered to see 
whether they lie entirely inside the partition region. 

To further reduce the amount of computation, a hierarchical 
search strategy is used. After choosing a motion vector for 
each region of the geometric partition and performing 
overlapped motion compensation as described below, the 
motion cost is evaluated using the sum of absolute differences 
(SAD). For a 16×16 block, a motion cost is calculated for each 
possible geometric partition. Then, 16 geometric partitions 
with the best motion costs are selected from 256 possible 
partitions. Full enhanced predictive zonal search (EPZS) [15] 
is performed on each partition region of each of the 16 
partitions. This is followed by the calculation of the true rate-
distortion (RD) cost. The geometric partition with the lowest 
RD cost is chosen. This is compared against the RD cost for 
optimal rectangular partitioning of the 16×16 block to 

θ

ρ

MV1

MV2

 
Fig.1.  Parameters defining a geometric motion partition. 
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determine whether geometric partitioning should be used for 
that particular block.  
For the 32×32 and 64×64 blocks, a similar strategy is followed 
with a slight variation. For these block sizes, instead of 
evaluating the SAD motion cost for each geometric partition, it 
is evaluated for a subset of the possible geometric partitions. 
This subset is obtained by subsampling ρ  and θ  by 2. Thus, 

the SAD motion cost is evaluated for 128 geometric partitions 
for a 32×32 block and 256 geometric partitions for a 64×64 
block. Then, for each extended block size, 2 geometric 
partitions having the best SAD motion costs are chosen. Let 
one of the geometric partitions chosen have parameters 1ρ  and 

1θ . Then, true RD costs for geometric partitions with 

11 11 +−= ρρρ ,  and oo 25112511 111 .,,. +−= θθθθ  are 

evaluated using the EPZS search. Similar process is repeated 
for the other geometric partition chosen in the first stage. The 
geometric partition with the lowest RD cost is chosen and 
compared against the RD cost for the optimal rectangular 
partitioning of the corresponding block size. 

b)  Overlapped motion compensation for geometric 
partitions 

Since two different motion vectors are used for motion 
compensation inside a block with geometric partition, the 
pixels at the partition boundary may have large discontinuities 
that can produce visual artifacts similar to blockiness. 
Furthermore, since the geometric partition boundary may not 
be aligned with the macroblock and sub-macroblock 
boundaries, it is likely that the deblocking filter may not be 
able to reduce the blockiness resulting from the geometric 
motion partitions. To alleviate this, we apply the principle 
behind overlapped block motion compensation (OBMC) to the 
geometric motion partitions. Let the two regions created by a 
geometric partition be denoted by region 1 and region 2. Let 
the corresponding motion vectors be denoted by 1MV  and 

2MV , respectively. A pixel from region 1 (2) is defined to be 

a boundary pixel if any of its four connected neighbors (left, 
top, right, and bottom) belongs to region 2 (1). Fig. 3 shows an 
example where dark mesh squares belong to the boundary of 

region 1 and light mesh squares belong to the boundary of 
region 2. If a pixel is not a boundary pixel, normal motion 
compensation is performed using the appropriate motion 
vector. But if a pixel is a boundary pixel, motion compensation 
is performed using a weighted sum of the motion predictions 
from the two motion vectors, 1MV  and 2MV . The weights are 

32  for the region containing the boundary pixel and 31  for 

the other region. The overlapped boundaries improve the 
visual quality of the reconstructed video while also providing 
small coding gain. 
3) Motion accuracy  

The AVC/H.264 standard allows motion vectors having 
1/4th pixel accuracy. But the 1/4th pixel positions are 
interpolated using bilinear interpolation from full pixel and 
half pixel positions. Using separate filters designed to perform 
1/4th and 3/4th pixel interpolation results in more accurate 
interpolation. Furthermore, in certain sequences and certain 
regions, it is beneficial to have higher (1/8th pixel) accuracy 
motion vectors. For the proposed video codec, for each region 
in a motion partition, the motion accuracy can be adaptively 
chosen to be 1/4th pixel or 1/8th pixel. We will refer to this as 
adaptive motion vector resolution. The choice of the motion 
vector resolution is signaled to the decoder. The details of how 
to encode the motion vector resolution flag as well as motion 
vector differences will be provided in section II.E.4). 

The motion search at the encoder is modified as follows. 
For every block in a motion partition, first a 1/4th pixel 
accuracy motion vector is found using EPZS (or any other 
preferred motion search algorithm). Then, as shown in Fig. 4, 
eight surrounding 1/8th pixel positions are searched to find the 
best 1/8th pixel accuracy motion vector. The motion vector 
(1/4th or 1/8th pixel accuracy) with the lowest RD cost is 
selected. Thus, the added complexity for adaptive motion 
vector resolution is mainly due to the interpolation and the RD 
cost calculations corresponding to the eight 1/8th pixel 
positions. The details of interpolation will be discussed in the 
next subsection. 
4) Interpolation 

a) Luma interpolation 

In the proposed video codec, single pass switched 

 
Fig. 2.  Reusing rectangular partition motion vectors for geometric partition 
motion search. 

 
Fig. 3.  Overlapped motion compensation for geometric partitions. 
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interpolation filters with offsets (single pass SIFO) are used to 
interpolate the reference frame to 1/4th pixel accuracy for the 
luma component. The single pass SIFO filters were first 
proposed in [16]. First we review the interpolation methods 
used in the AVC/H.264 standard. Then, the proposed 
interpolation method is described in greater detail. 

(1) AVC/H.264 interpolation 

The AVC/H.264 standard uses 1/4th pixel accuracy for the 
luma motion vectors. Fig. 5 shows the integer-pixel samples 
(also called full pixel, shown in gray blocks with upper-case 
letters) from the reference frame, which are used to interpolate 
the fractional pixel (shown in white blocks with lower-case 
letters) samples. There are altogether 15 fractional pixel 
positions, labeled “a” through “o” in Fig. 5. To obtain luma 
component at 1/2 pixel positions (b, h, and j), a 6-tap Wiener 
filter with coefficients [1, -5, 20, 20, -5, 1]/32 is used. For 
position j, the interpolation filter is applied first in the 
horizontal direction and then, in the vertical direction. To 
obtain luma component at 1/4th pixel locations, bilinear 
interpolation is used. To perform bilinear interpolation, the 
neighboring 1/2 pixel positions are calculated. These are 
rounded and clipped to the original input bit-depth (for 
example 8 bits). After that, the 1/4th pixel locations are 
obtained by averaging using upward rounding. The 
combination of intermediate rounding and clipping of the 1/2 
pixel positions and the biased upward rounding during bilinear 
interpolation effectively reduces the precision of the 
interpolation filters for the 1/4th pixel positions. By 
maintaining the 1/2 pixel positions in 16 bit or higher 
precision, the interpolation of the 1/4th pixel positions can be 
improved by eliminating intermediate rounding and clipping of 
the 1/2 pixel positions to input bit-depth and the biased 
upward rounding during bilinear interpolation This is referred 
to as high precision interpolation filtering. This was first 
proposed in [16] and used in the proposed video codec.  

(2) Single pass switched Interpolation Filters 
with offsets (single pass SIFO) 

The basic idea behind switched interpolation filters is that at 
each of the 15 fractional pixel positions, an interpolation filter 
can be chosen from a set. For each fractional pixel position, 
the choice of the filter is signaled at the slice level. In addition, 
choice of offsets is also signaled for each slice as described in 

the following subsection. The advantage of this interpolation 
method is that unlike various adaptive interpolation filters 
proposed in the literature, it does not require multiple passes 
through the frames. The frequency responses of filters allowed 
for each fractional pixel position need to have enough diversity 
to cater to different type of video content. At the same time, 
having too many filters in each set can increase the amount of 
information necessary to be signaled at the slice level. In our 
proposed codec, at each fractional pixel location, four different 
interpolation filters are permitted. Thus, four different filter 
sets are defined, each set consisting of 15 filters, one for each 
fractional pixel position. The full pixel position is not filtered. 
 

1. Filter set 0: This uses high precision filtering with the 
same filters as in AVC/H.264 with the exception of position 
‘g’, where a non-separable filter, as shown in Table I, is used 
(followed by right shift by 7 bits). 

TABLE I 
FILTER FOR FRACTIONAL PIXEL POSITION ‘G’  FOR FILTER SET 0. 

0 5 5 0 
5 22 22 0 
5 22 22 5 
0 5 5 0 

2. Filter set 1 and set 2: These filter sets are derived by 
using a set of training video sequences. For each set, positions 
a, b, and c use a six-tap horizontal filters. Positions d, h, and l 
use six-tap vertical filters. For the remaining fractional pixel 
positions, 4×4 non-separable filters are used. Each of the non-
separable filters has horizontal, vertical or diagonal symmetry. 

3. Filter set 3: This filter set uses an 8-tap separable filter in 
both horizontal and vertical directions for all the fractional 
pixel positions. Separate 8-tap filters are used for 1/4th pixel, 
1/2 pixel, and 3/4th pixel positions. The three 8-tap filters are 
shown in Table II. After filtering, the result is normalized by 
adding 128 and shifting the result down by 8 bits and then 
clipped to the pixel range. 

 
Fig. 4.  Motion search for 1/8th pixel accuracy. 

 
 
Fig. 5.  Fractional pixel positions for 1/4th pixel accuracy motion interpolation. 
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TABLE II 
FILTER COEFFICIENTS FOR FILTER SET 3. 

1/4th pixel 
position 

[-3    12    -37   229    71    -21    6     -1] 

1/2 pixel 
position 

[-3    12    -39   158   158   -39   12    -3] 

3/4th pixel 
position 

[-1      6    -21     71   229    -37  12    -3] 

(3) Direct filtering for 1/8th pixel accuracy 
motion vectors 

To perform interpolation with 1/8th pixel accuracy, our 
proposal uses direct filters for computationally efficiency. 
When IBDI is not being used, it also provides coding gains 
because of lack of intermediate rounding and clipping of the 
1/4th pixel positions as well as lack of biased upward rounding 
in averaging. For any 1/8th pixel position, these filters are 
derived from the filters used for the 1/4th pixel positions 
assuming bilinear interpolation. For determining the 1/8th pixel 
filters, it is assumed that filter set 3 is used for all the 1/4th 
pixel positions. As an example, for 3/8th pixel position the 
following 8-tap direct filter used is used: 

[-6, 24, -76, 387, 229, -60, 18, -4]. 
Here we have not shown explicit rounding and clipping at 

the end of the filtering process. Thus, interpolation for any 
1/8th pixel position requires filtering with at most two 8-tap 
filters (horizontal and vertical). The proposed codec uses no 
offset associated with the 1/8th pixel positions. This is done 
due to the trade-off between the amount of side information 
that needs to be sent and coding gain. For chroma 
interpolation, the motion vectors in the proposed codec were 
restricted to 1/8th pixel accuracy and high precision filtering 
was used with 6-tap filters. The details can be found in [6]. 

(4) Choice of filter set and offsets 

Before encoding a frame, the encoder selects a filter for 
each fractional pixel position based on statistics gathered from 
previously encoded frames of the same type (P or B). In our 
proposal, the filter that minimizes the sum of squared 
prediction errors for the previously encoded frames is selected. 
For each fractional pixel position, the minimization is 
performed only on blocks whose motion vector points to that 
fractional pixel location. The choice of filter remains the same 
irrespective of the reference frame in which the motion search 
is being performed. For reference frame 0 from each list, 
offsets are sent to the decoder for each of the 15 fractional 
pixel positions as well as the full pixel position For other 
reference frames only one frame offset is sent. The offsets 
provide significant gains for video sequences with illumination 
changes. 
5) Transforms for inter-prediction residuals 

We will first discuss transforms for encoding inter-
prediction residuals for non-geometric motion partitions. For 
motion partitions of size 8×8 and lower, the transform choices 
are identical to AVC/H.264. We reuse the 4×4 and 8×8 
transforms from AVC/H.264. As in AVC/H.264, these 

transforms can not be applied across motion boundaries. For 
motion partition of sizes 16×16, 16×8, and 8×16, in addition 
to the 4×4 and 8×8 transforms, it is possible to apply a larger 
transform that is matched to the size of the motion partition. 
As an example, for an 8×16 motion partition, the transform 
choices are 4×4, 8×8, and 8×16. The choice of the transform is 
signaled to the decoder. For motion partitions of size 64×64, 
64×32, and 32×32, only 16×16 transform can be used. Here 
we have adopted a variation of the encoder simplification 
suggested in [17] to disallow 4×4 and 8×8 transforms in 
motion partitions larger than 16×16. This speeds up the 
encoder substantially with very little effect on compression 
efficiency. We now will describe the design of the 16×16, 
16×8, and 8×16 transforms, hereafter referred to as Big 
Transforms, in greater detail. 

Our proposal uses separable two-dimensional (2-D) 
transforms discussed in [18]. The transforms are integer scaled 
transforms that approximate Type II DCT [19]. Each 
transform coefficient needs to be multiplied by a scale factor 
to make the resulting transform orthogonal. The design of the 
proposed transforms is fully recursive and based on the LLM 
factorization for the 4 point and 8 point transforms [20]. 

a) Proposed 16-point transform 

Fig. 6 shows detailed flow-graph of the proposed one 
dimensional (1-D) 16 point transform. The upper (even) part 
of the transform uses a scaled 8-point transform (shown with a 
bounding box with solid lines), which in turn uses a scaled 4-
point transform (shown with a bounding box with dotted 
lines). Similarly, the lower (odd) part of the transform uses two 
scaled 4-point transforms. The scaling factors for the 16-point 
transform are shown on the right hand side. The factors A, B, 
… , N satisfy the following relations: 

and,, 222222 FEDCBA +=+=+= ςξ  
(3) 

.22222222 NMLKJIHG +=+=+=+=η  

This factorization involves 728164 =+×  additions and 
3643816 =×++  multiplications, which matches the 

complexity of the best known rotation-based factorizations 
[19], [20], and has the advantage of a fully recursive structure, 
reusing scaled 4-point transforms. It should be noted that the 
above matrix only specifies a scaled 16-point transform, and that 
in order to map its output into full transform coefficients, we will 
need to multiply them by the scaling factors shown on the right 
hand side in Fig. 6. 

b) Transform Matrix 

For the 1-D 16 point transform we choose the butterfly 
factors shown in Table III. Here, in order to balance the 
dynamic range across the transform, we have introduced right 
shifts after multiplies. The transform coefficients now fit in the 
range [-1.25, 1.25], which is tight enough for practical 
purposes. Since constants A..N are integers (or dyadic rational 
numbers), we can replace multiplications with simple series of 
additions and shift operations. Moreover, we can do it for each 
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pair of multiplies performed for each input variable in 
butterflies. The complexity of the entire multiplier-less 16-
point transform with such factors becomes 110 additions and 
48 shifts. The details can be found in [21]. On the other hand, 
on platforms with fast multiplications one can also implement 
it by using 72 additions and 32 multiplications by simply 
following the flow graph.  

TABLE III 
BUTTERFLY FACTORS FOR THE 1-D 16 POINT TRANSFORM. 

42=A  45=B  3219=C  324=D  

3216=E  3211=F  6434=G  6427=H  

6428=I  6421=J  6442=K  6411=L  

6443=M  646=N    

c) Proposed 1-D 8 point transform 

We reuse the scaled 8 point transform from the upper (even) 
part of the 16 point transform. The butterfly factors A – F are 
the same as in Table III. The 1-D 8 point transform needs 26 
additions and 12 multiplications. If desired, the multiplication 
can be replaced by additions and shifts as in the case of the 16 
point transform. 

When implementing the transforms, to avoid accumulation 
of rounding errors, we pre-shift the 2-D input matrix to the left 
by 8 bits. After the transform, the transform coefficients are 
shifted to the right by the same amount after appropriate 
rounding. All the bigger transforms, namely, 16×16, 16×8, and 
8×16 can be implemented with 32 bits of precision. 

C. Quantization 

Quantization methods are unchanged from AVC/H.264. 
Since 16×16, 16×8, and 8×16 transforms used in the proposed 
codec are scaled transforms, the scaling factor for each 
transform coefficient is absorbed into the quantization step. On 
the encoder side, our proposal uses RD based quantization 
(RDO_Q) first proposed in [22] and discussed in greater detail 
in [23]. The RD based quantization mainly consists of 2 parts: 

1. Trellis-based optimization of the quantization operation 
for transform coefficients: In the trellis-based optimization, the 
quantizer index is chosen based on the RD cost of coding that 
index in a Lagrangian framework. Due to the manner in which 
entropy coding of quantized coefficients is performed in 
AVC/H.264, it is sometimes advantageous to quantize a 
coefficient to zero instead of rounding to the nearest quantizer 
level. This is because the rate may be lowered sufficiently to 
offset the increase in distortion. In the proposed video codec, 
to keep the computation complexity manageable, only 3 
candidate quantizer indices are considered in most cases. 
These are 0, round-up, and round-down. For CABAC, the 
optimization is performed in 2 steps. In the first step, the last 
non-zero coefficient is chosen. Then in the 2nd step, the 
quantizer indices for individual coefficients are chosen. 

2. Quantizing and coding a block with multiple quantizer 
step-sizes: Each block is encoded using a range of QP values. 
Then the QP value with the best RD cost is chosen and 
signaled to the decoder. In the proposed codec, for I and P 

slices, only a single QP value is used. For B slices, 3 QP 
values are used: (QP, QP+2, QP+3). 

D. In-loop filtering 

1) Deblocking filter 
Our proposal uses the same deblocking filter as AVC/H.264 

with suitable modification for BigBlocks. Recall that for block 
sizes greater than 16×16, only 16×16 transform is used. Thus, 
for 32×32 and 64×64 blocks, deblocking filter is applied only 
along the 16×16 block edges. This reduces the computational 
complexity for the deblocking operation if the bigger blocks 
are chosen frequently. 
2) Adaptive loop filtering 

We used a modified form of the quadtree-based adaptive 
loop filter (QALF) proposed in [24]. Instead of a single filter 
used in QALF, our proposal uses a set of M filters. The set of 
M filters is transmitted to the decoder for each frame or a 
group of frames (GOP). Whenever the QALF segmentation 
map indicates that a block should be filtered, for each pixel, a 
specific filter from the set is chosen based on a measure of 
local characteristic of an image, called the activity measure. 
Our proposal uses the sum-modified Laplacian measure as 
described in [24]. The sum-modified Laplacian was first 
proposed in [25] as a measure of image focus. It is a discrete 
approximation to the modified Laplacian. The sum-modified 
Laplacian for pixel ),( ji  is calculated as follows: 

∑ ∑
−= −=

++++−+++ ++−=
K

Kk

L

Ll
ljkiljkiljki RRRji ,,,),var( 112  

,,,, 112 +++−++++ +− ljkiljkiljki RRR  (4) 

where jiR ,  refers to the reconstructed frame value for pixel 

),( ji . A 7×7 ),( 3=LK  neighborhood is used for calculation 

of the sum-modified Laplacian. The ranges of sum-modified 
Laplacian measure have to be sent to the decoder. Filter 
coefficients are coded using prediction from coefficients 
transmitted for previous frames. Our proposal uses 5×5, 7×7, 
and 9×9 filters with diamond shape support and symmetry as 
shown in Fig. 7. The numbers inside the squares indicate 
symmetry. Thus, pixels with index 1 have the same filter 
coefficient. The diamond shape support was chosen because it 
offers a good trade-off between complexity and performance. 
Adaptive loop filtering for chroma is the same as that in the 
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Fig. 7.  5×5 symmetric filter with diamond support. 
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original QALF. 

E. Entropy coding 

Context adaptive binary arithmetic coding (CABAC) [26] is 
used in the proposed video codec for encoding of information 
such as block type, coded block pattern, motion vectors and 
transform coefficients. The context is based on the neighboring 
blocks in a similar way as in AVC/H.264. The differences 
from AVC/H.264 are highlighted below. 
1) Macroblock type 

For a 64×64 block, a new syntax element, mb64_typemb64_typemb64_typemb64_type, is 
introduced to indicate the motion partition for the block. This 
can be SKIP, DIRECT, 64×64, 64×32, 32×64 or P32x32. A 
mb64_typemb64_typemb64_typemb64_type of P32×32 for a 64×64 block indicates that the 
block is split into four 32×32 blocks. Then, for each 32×32 
block, a new syntax element, mb32_typemb32_typemb32_typemb32_type, is sent indicating 
the motion partition for the block. An mb32_typemb32_typemb32_typemb32_type of P16×16 
for a 32×32 block indicates that the block is split into four 
16×16 blocks. In that case, for each 16×16 block, the 
macroblock type, mb_typemb_typemb_typemb_type, is sent to the decoder. 
2) Coded block pattern (cbp64 and cbp32) 

For a 64×64 block, a new one bit syntax element, cbp64cbp64cbp64cbp64, is 
introduced to indicate whether the whole 64×64 block has any 
nonzero coefficients. A nonzero cbp64cbp64cbp64cbp64 value indicates that 
there is at least one nonzero transform coefficient. If cbp64cbp64cbp64cbp64 is 
1, for each 32×32 block, cbpcbpcbpcbp32323232 is encoded to indicate whether 
the whole 32×32 block has any nonzero coefficients. If cbpcbpcbpcbp32323232 
is 1, for each 16×16 block, the current AVC/H.264 cbpcbpcbpcbp is 
encoded to indicate its status. 
3) Change in luminance quantizer step-size (mb64_delta_qp 
and mb32_delta_qp) 

Our proposal permits the luminance quantizer step-size to 
change as follows. If a 64×64 block is partitioned into 4 
separate 32×32 blocks, each 32×32 block can have its own 
QP. If a 32×32 is further partitioned into four 16×16 blocks, 
each 16×16 block can also have its own QP. This information 
is signaled to the decoder using delta_qpdelta_qpdelta_qpdelta_qp syntax. For a 64x64 
block, if the mb64_type is not P32×32, mb64_delta_qpmb64_delta_qpmb64_delta_qpmb64_delta_qp is 
encoded to signal the relative change in luminance quantizer 
step-size with respect to the block on the top-left side of the 
current block. The decoded value of mb64_delta_qpmb64_delta_qpmb64_delta_qpmb64_delta_qp is 
restricted to be in the range [-26, 25]. The mb64_delta_qpmb64_delta_qpmb64_delta_qpmb64_delta_qp 
value is inferred to be equal to 0 when it is not present for any 
macroblock (including P_Skip and B_Skip macroblock types). 
The value of luminance quantization for the current block, 

YQP , is derived as 

.52)%52ltamb64_qp_de(QPQP prevY,Y ++=  (5) 

where prevY,QP  is the luminance quantization parameter of 

the previous 64x64 block in the decoding order in the current 
slice. For the first 64×64 block in the slice, prevY,QP  is set 

equal to the slice QP sent in the slice header. 
If mb64_typemb64_typemb64_typemb64_type is P32×32, for each 32×32 block, the same 

process is repeated. That is, if mb32_typemb32_typemb32_typemb32_type is not P16×16, 
mb32_delta_qpmb32_delta_qpmb32_delta_qpmb32_delta_qp is encoded. Otherwise, delta_qpdelta_qpdelta_qpdelta_qp for each 

16×16 macroblock is sent to the decoder as in AVC/H.264. It 
should be noted that when delta_qpdelta_qpdelta_qpdelta_qp is signaled at the 64×64 or 
32×32 block size, it is applicable to all the blocks in the 
motion partition. 
4) Adaptive Motion Vector Resolution 

For each block in a motion partition, a motion vector 
resolution flag is encoded. A value of 1 (0) implies 1/8th pixel 
(1/4th pixel) motion vector resolution is used for that motion 
vector. We will describe the contexts used for CABAC 
encoding of motion vector resolution flag and motion vector 
differences (MVD). 

For CABAC encoding of the motion vector resolution flag, 
four contexts are used. The contexts are defined based on the 
motion resolution of neighboring partitions. Let A be the left 
neighboring partition and let B be the upper neighboring 
partition. The precise definition of neighboring partitions is the 
same as that used in the AVC/H.264 MVD encoding. The four 
contexts used to encode the motion vector resolution flag for 
the current block are: 

1. Both A and B have 1/8th pixel motion accuracy. 
2. A has 1/4th pixel motion accuracy and B has 1/8th pixel 

motion accuracy. 
3. A has 1/8th pixel motion accuracy and B has 1/4th pixel 

motion accuracy. 
4. Both A and B have 1/4th pixel motion accuracy. 
The encoder always maintains the motion vector (MV) and 

MVD information at 1/8th pixel resolution (by left-shift if 
necessary). Then, the MV prediction for the current block is 
formed with 1/8th pixel accuracy. If the current block has only 
1/4th pixel motion accuracy, the MV prediction is converted to 
1/4th pixel accuracy by right-shifting and then the MVD is 
formed. On the other hand if the current block has 1/8th pixel 
motion accuracy, the MVD is formed directly by subtracting 
the MV prediction from the motion vector for the current 
block. Once the MVD is formed, if the current block has 1/4th 
pixel accuracy, for all the neighboring blocks used for 
determining the MVD contexts, the MVDs are converted to 
1/4th pixel accuracy. Similar procedure is followed for 1/8th 
pixel accuracy. The encoding of MVD is performed as 
specified in AVC/H.264. 

III.  EXPERIMENTAL RESULTS 

A. Objective performance 

In this section, the quantitative results from our proposal in 
response to CfP are presented. The objective performance is 
compared with the Alpha and Beta anchors [5] generated by 
JM 16.2 [27] for constraint sets 1 and 2, respectively. 
Constraint set 1 (CS1) results for the proposed codec are 
compared with the alpha anchor. Constraint set 2 (CS2) results 
for the proposed codec are compared with the beta anchor. 
Five RD points were generated for each sequence. The results 
are reported in terms of BD-rate [28], [29]. In Table IV, the 
results are reported by averaging the high BD-rate and the low 
BD-rate. For the calculation of high BD-rate, the four highest 
rates are used and for the calculation of low BD-rate, four 
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lowest rates are used. 
TABLE IV 

CODING GAIN IN TERMS OF BD-RATE RELATIVE TO THE ALPHA ANCHOR FOR 

CONSTRAINT SET 1 AND BETA ANCHOR FOR CONSTRAINT SET 2. 

Class Seq. Name 
CS1 

BD-rate 
(%) 

CS2 
BD-rate 

(%) 

Class A 
4kx2k 

Traffic -32.2  

PeopleOnStreet -19.9  

 Avg_4kx2k -26.1  

Class B 
1080p 

Kimono1 -39.6 -42.6 

ParkScene -27.8 -27.9 

Cactus -30.9 -31.7 

BasketballDrive -35.3 -41.1 

BQTerrace -40.0 -48.0 

 Avg_1080p -34.7 -38.3 

Class C 
WVGA 

BasketballDrill -30.7 -28.7 

BQMall -32.7 -31.4 

PartyScene -32.7 -26.3 

RaceHorses -28.3 -27.4 

 Avg_WVGA -31.1 -28.5 

Class D 
WQVGA 

BasketballPass -22.3 -23.0 

BQSquare -44.0 -34.0 

BlowingBubbles -26.7 -16.1 

RaceHorses -20.5 -20.4 

 Avg_WQVGA -28.4 -23.4 

Class E 
720p 

Vidyo1  -46.4 
Vidyo3  -41.4 
Vidyo4  -41.3 

 Avg_720p  -43.0 

 Overall Avg -30.9 -33.0 

B. Subjective performance 

All the proposals that were submitted in response to the CfP 
underwent rigorous subjective evaluations. Table V compares 
the average mean opinion score (MOS) for the proposed codec 
against the corresponding AVC/H.264 anchors for different 
resolutions. From the table it can be seen that the average gain 
on MOS scale is in the range 1.1 – 2.6. The proposed codec 
scored highly in subjective evaluations and was among the 
best-performing CfP proposals. 

TABLE V 
COMPARISON OF THE SUBJECTIVE PERFORMANCE OF THE PROPOSED CODEC 

AGAINST ALPHA AND BETA ANCHORS FOR CS1 AND CS2, RESPECTIVELY. 

Class 

Average MOS 
CS1 CS2 

Proposed 
codec 

Alpha 
anchor 

Proposed 
codec 

beta 
anchor 

1080p 8.2 6.5 7.5 5.3 
WVGA 6.2 4.5 5.5 3.9 

WQVGA 6.4 5.3 5.4 4.1 
720p   6.8 4.2 

C. Complexity comparison 

We have discussed the complexity of the different tools 
used in the proposed codec throughout the paper. Here we 
provide an estimate of the average encoding and decoding 
times for the proposed codec against JM 16.2. 

The encodings were performed on a Linux cluster. The 
encoders for the proposed codec and JM 16.2 were compiled 
in 32 bits. The encoder software for the proposed codec was 
single-threaded with no assembly code. When averaged over 
different bit rates, sequences and constraint sets, the average 
encoding time for the proposed codec was roughly 3 times 
higher than that for JM 16.2. 

The decoding was performed on a Windows PC running 32-
bit Windows XP. The decoder software for the proposed 
codec was single-threaded with no assembly code and 
compiled using Microsoft® Visual Studio® 2005 Professional 
Edition. The I/O times (for output YUV file generation) were 
included in decoding times measurements. The average 
decoding time for the proposed codec was roughly 3 times 
higher than that for JM 16.2. 

IV.  CONCLUSION 

In this paper, we have presented a video codec based on 
extended macroblock sizes, improved interpolation and 
flexible motion representation. This codec constituted 
Qualcomm’s response to CfP for the next generation video 
coding standard. In this paper, the key features of the proposed 
codec have been described, including detailed algorithm 
descriptions. We have presented objective and subjective 
performance results for the proposed codec in comparison to 
the anchors generated by the AVC/H.264 reference software 
codec JM16.2. The proposed codec scored highly in both 
subjective evaluations and objective metrics and was among 
the best-performing CfP proposals.  
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Fig. 6.  Detailed flow graph for the proposed 1-D 16 point transform. 


