
> TCSVT 4442 <

1

Abstract— This paper describes a video coding technology

proposal submitted by Qualcomm in response to a joint call for
proposal (CfP) issued by ITU-T SG16 Q.6 (VCEG) and
ISO/IEC JTC1/SC29/WG11 (MPEG) in January 2010. The
proposed video codec follows a hybrid coding approach based
on temporal prediction, followed by transform, quantization
and entropy coding of the residual. Some of its key features
are extended block sizes (up to 64×64), single pass switched
interpolation filters with offsets, mode dependent directional
transforms for intra-coding, luma and chroma high precision
filtering, geometric motion partitions, adaptive motion vector
resolution and efficient 16 point transforms. It also
incorporates internal bit-depth increase and modified quadtree-
based adaptive loop filtering. Simulation results are presented
to demonstrate the high compression efficiency achieved by
the proposed video codec at the expense of moderate increase
in encoding and decoding complexity compared to the
AVC/H.264 standard. For the Random Access and Low Delay
configurations, it achieved average bit rate reductions of
30.9℅ and 33.0℅ for equivalent PSNR, respectively,
compared to the corresponding AVC anchors. The proposed
codec scored highly in both subjective evaluations and
objective metrics and was among the best-performing CfP
proposals.

Index Terms — Geometric motion partitions, MDDT, adaptive
motion vector resolution, switched interpolation filters with
offsets, video coding

I. INTRODUCTION

This paper describes a video coding technology proposal
submitted by Qualcomm in response to a joint call for proposal
(CfP) [1], [2] issued by ITU-T SG16 Q.6 (VCEG) and
ISO/IEC JTC1/SC29/WG11 (MPEG) in January 2010. Details
regarding the CfP process, test set, coding constraint

Manuscript received August 2, 2010; revised October 11, 2010; accepted

October 19, 2010.
Authors are with Qualcomm, Inc., 5775 Morehouse Dr., San Diego, CA

92121, USA. The corresponding author is Marta Karczewicz (Tel. +1-858-
658-5673; e-mail: martak@qualcomm.com).

Copyright (c) 2010 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending an email to pubs-permissions@ieee.org.

conditions, subjective evaluation methodology, the
AVC/H.264 [3], [4] anchors used, etc. can be found in the
introduction to the special section on the call for proposals on
high efficiency video coding standardization of this issue [5].
Qualcomm’s proposal [6] scored highly in both subjective
evaluations and objective metrics and was among the best-
performing CfP proposals. Some of the key features of
Qualcomm’s proposal are block sizes larger than the
traditional 16×16 macroblock structure, transforms of sizes
16×16, 16×8, and 8×16, in addition to 4×4 and 8×8, mode
dependent directional transforms (MDDT) for intra-coding,
luma high precision filtering, single-pass switched
interpolation filters with offsets (single-pass SIFO), geometric
motion partitions, adaptive motion vector resolution, and
efficient 16 point transforms.

The proposed video codec utilized some coding tools
proposed by other companies and adopted into the JM Key
Technology Areas (JMKTA) software [7] such as internal bit-
depth increase (IBDI) [8], and modified quadtree-based
adaptive loop filtering (QALF) [9]. Several other tools such as
chroma high precision filtering, direct mode for P slices,
motion vector scaling, and changes to the AVC/H.264 mode
syntax for B slices were also included in the proposed video
codec. However, due to a limitation of space, these techniques
will not be described in this paper. Interested readers are
referred to [6] for a complete description of these techniques.

The rest of this paper is organized as follows. In Section II,
the details of the key features of the proposed codec are
provided in the context of the different functional blocks. In
Section III, experimental results are presented. The
performance of the proposed video codec is evaluated under
low delay and random access conditions. The coding results
are compared to the AVC/H.264 anchors provided by the CfP.
Results of subjective evaluations and complexity comparisons
are also provided. Finally, conclusions are presented in
Section IV.

II. CODEC DESIGN

The proposed codec is based on the traditional hybrid
coding approach, utilizing motion-compensated temporal
prediction between video frames as well as intra-frame
prediction, followed by 2-D transformation of the spatial

A hybrid video coder based on extended
macroblock sizes, improved interpolation and

flexible motion representation

Marta Karczewicz, Peisong Chen, Rajan L. Joshi, Xianglin Wang, Wei-Jung Chien, Rahul Panchal,
Yuriy Reznik, Muhammed Coban, and In Suk Chong

> TCSVT 4442 <

2

residual signals, quantization, and entropy coding. The codec
operates in a closed-loop and uses deblocking as well as
quadtree-based adaptive loop filtering. The different functional
blocks of the proposed codec are discussed in greater detail in
the following subsections.

A. Intra-block coding

Intra-prediction used in the proposed video codec is
identical to that of AVC/H.264. For the 4×4 and 8×8 block
sizes, 9 prediction modes are used and for the 16×16 block
size, 4 prediction modes are used. It is observed that after
performing intra-prediction using the AVC/H.264 prediction
modes, there is still significant directional information left in
the prediction residual. To exploit this, the proposed codec
uses mode dependent directional transforms (MDDT) and
adaptive coefficient scanning to maximally compact the intra-
prediction residual energy and increase the entropy coding
efficiency, as described in the following subsections.
1) Mode dependent directional transforms for intra-
prediction residuals

To exploit the directionality of the intra-prediction
residuals, the proposed video codec uses mode dependent
directional transforms (MDDT). Since the transform is
dependent on the mode, no side information is necessary,
which is rather important for the smaller block sizes such as
4x4 and 8x8. MDDT was first proposed in [10], [11]. We
briefly describe the design and implementation of the MDDT.

MDDT is based on the Karhunen-Loève transform (KLT).
Ideally KLT derived from the statistics of the intra-prediction
residuals for a particular intra-prediction mode would be the
optimal choice from a rate-distortion perspective for that
mode. However, for a 2-D residual block, KLT is a non-
separable transform. For an NN × block, the KLT matrix size

is 22 NN × . Thus, KLT is prohibitively expensive in terms of
storage and computational requirement. Our proposed video
codec uses a separable NN × directional transform, which
can be described as

ii RXCY = (1)

where iC and iR are the column and row transform matrices

for the intra-prediction mode i, respectively. Singular Value
Decomposition (SVD) is applied to the training set of intra-
prediction residuals for a particular intra-prediction mode i,
first in the row direction, and then, in the column direction to
determine the transform matrices iC and iR . The proposed

codec uses fixed-point approximations of the transform
matrices. The training set used to design the MDDT matrices
consisted of QCIF and CIF sequences. It did not include any of
the sequences from the CfP test set.
2) Adaptive coefficient scanning

After applying a transform to the intra-prediction residuals,
the 2-D transform coefficient matrix is converted into a 1-D
array. In AVC/H.264, zigzag scanning order is used so that the
lower frequency coefficients are positioned earlier in the scan.
However, in the case of MDDT, even after separable
directional transform is applied, the resulting 2-D transform

coefficient matrix has some directionality. For example,
consider the vertical prediction mode (mode 0). After intra-
prediction, transform and quantization, the non-zero
coefficients tend to exist along the horizontal direction. By
using a coefficient scanning process oriented in the horizontal
direction instead of the zigzag scan, the non-zero coefficients
in the 2-D matrix can be positioned towards the beginning of
the 1-D array. This, in turn, improves the entropy coding
efficiency. Quantized transform coefficients corresponding to
different intra-prediction modes carry different statistics.
Therefore, for each mode, adaptive coefficient scanning is
used. This is accomplished as follows:

1. At the beginning of each video slice, the coefficient
scanning order for each intra-prediction mode is initialized.

2. For each non-zero coefficient coded, the count at the
corresponding position is incremented by one.

3. After each macroblock is coded, the coefficient scanning
order is updated according to the count statistics collected.

4. The collected count statistics are scaled down if the
maximum count exceeds a threshold. This gives more
importance to the recent past, resulting in better adaptivity.

5. The updated scanning order is used for the coding of the
future blocks. The control returns to step 2 until the encoding
of the slice is completed.

The initialization is performed based on the probability of
each transform coefficient being non-zero. The scanning order
is initialized in the decreasing order of the probability of a
coefficient being non-zero. The probabilities are derived from
the same training set used in the design of the MDDT matrices.

B. Inter-block coding

The proposed video codec introduces a number of coding
tools to improve the inter-block coding efficiency. Extended
block size motion partitions and geometric motion partitions
are introduced to better align the motion partition to the video
content. Also, the use of higher precision motion vector
representation and improved sub-pixel interpolation, further
improve the efficiency of motion compensation.
1) Extended block size motion partition

For higher resolution sequences such as 720p and 1080p, it
is much more likely that spatial areas larger than 16×16 have
homogeneous motion. Thus, it is advantageous to allow for
motion partition sizes larger than 16×16. Such an extended
block size motion partitioning scheme was proposed in [12]
and has been adopted by JMKTA. The proposed video codec
uses this scheme where the largest motion partition size is set
to 64×64. At 64×64 block size, motion partitions of 64×64,
64×32, 32×64, and 32×32 are permitted. If the motion
partition of 32×32 is chosen, each 32×32 block can have
motion partitions of 32×32, 32×16, 16×32, and 16×16. If a
16×16 partition is chosen at the 32×32 block level, each
16×16 block can be further partitioned in accordance with the
existing motion partition sizes in AVC/H.264 (16×16, 16×8,
8×16, 8×8, 8×4, 4×8, and 4×4). In addition, for the 64×64 and
32×32 blocks, skip and direct modes are also used as in the
case of 16×16 macroblocks in AVC/H.264.

> TCSVT 4442 <

3

In the proposed codec, the motion partition is determined by
performing a bottom-up search. First the minimum rate-
distortion (RD) cost for each 16×16 macroblock is determined.
Then the combined RD cost for 4 16×16 blocks is compared
with the RD costs for 32×32, 32×16, and 16×32 partitions. By
choosing the minimum RD cost, we obtain the optimal
partition for the 32×32 block. This process is repeated for the
4 neighboring 32×32 blocks, to obtain the optimal motion
partition for the 64×64 block. It should be noted that if the best
motion partition contains 16×16 blocks, then the 16×16 blocks
may be intra-coded.
2) Geometric motion partitions

In AVC/H.264, a translational motion model is assumed for
rectangular blocks. But this model is not accurate when a
motion boundary is present within a rectangular block. This
problem is exacerbated when extended block size motion
partitions are used. One way to overcome this problem is to
divide a block containing a motion boundary into smaller
rectangular blocks so that the motion boundary affects only a
few of the smaller blocks. But in this case, the number of
motion vectors that are needed to be sent to the decoder is
much larger, resulting in higher rate. Another solution that was
proposed in [13], [14] is to use another kind of motion
partitioning known as geometric motion partitions. This
motion partitioning divides the block into 2 regions. The
boundary separating the 2 regions is defined by a straight line.
One motion vector is sent for each region. In our proposed
codec, geometric motion partition is introduced at block sizes
of 64×64, 32×32 and 16×16.

The geometric motion partitions are created as follows. The
origin is assumed to be at the center of the block. Then, each
geometric partition is defined by a line passing through the
origin that is perpendicular to the line defining the partition
boundary. This is shown in Fig. 1. The geometric partition is
defined by the angle subtended by the perpendicular line with
the X axis)(θ and the distance of the partition line from the

origin)(ρ . The equation of the line defining the partition

boundary can be specified as

cxmxy +=+−=
θ

ρ
θ sintan

1

(2)

We use two 32 bit lookup tables, one to store the slope,
θtan1− , and the other to store the scaled Y-intercept,

θsin1− . The region to which each pixel belongs is calculated

on the fly.
For each block size, 32 different values of θ are permitted

(from 0 to 360 in steps of 11.25). The number of different
values for ρ depends on the block size. For the block size of

16×16, ρ can take 8 possible values (0 - 7). For block sizes

of 32×32 and 64×64, ρ can take 16 and 32 possible values,

respectively. Thus, for block sizes of 16×16, 32×32, and
64×64, there are 256, 512, and 1024 possible geometric
partitions, respectively.

a) Motion search for geometric motion partitions

Since there are so many possible geometric partitions for
each block size, it is prohibitively expensive for the encoder to
do motion estimation for each region of each geometric
partition and then, perform rate-distortion optimization. To
overcome this difficulty, whenever possible, motion vectors
from the rectangular partitions at all block sizes are reused to
speed-up the motion vector search for geometric partitions.
The encoder is structured in such a manner that the motion
estimation for all the rectangular motion partitions is
performed before the motion search for the geometric
partitions. For each geometric partition region, we find the
largest rectangular block that lies entirely inside the region and
for which a motion vector is available. The estimated motion
vector for that block is used as the motion vector for the
partition region. If there are multiple blocks of the same size
that lie entirely inside the region, the first block in the scan
order is chosen. Fig. 2 shows an example of this process.
Suppose that we are interested in calculating the RD cost of a
geometric motion partition represented by the line shown in
Fig. 2. In that case, for the region above the line, the 4×8 block
is the largest block for which a motion vector is already
available. The motion vector for the 4×8 block is assigned to
the region above the line. Similarly the motion vector for the
8×8 block shown in Fig. 2 is assigned to the geometric
partition region below the line. If a geometric partition at
block size of 16×16 is being considered, all the blocks of sizes
16×8, 8×16, 8×8, 8×4, 4×8, and 4×4 are considered to see
whether they lie entirely inside the partition region.

To further reduce the amount of computation, a hierarchical
search strategy is used. After choosing a motion vector for
each region of the geometric partition and performing
overlapped motion compensation as described below, the
motion cost is evaluated using the sum of absolute differences
(SAD). For a 16×16 block, a motion cost is calculated for each
possible geometric partition. Then, 16 geometric partitions
with the best motion costs are selected from 256 possible
partitions. Full enhanced predictive zonal search (EPZS) [15]
is performed on each partition region of each of the 16
partitions. This is followed by the calculation of the true rate-
distortion (RD) cost. The geometric partition with the lowest
RD cost is chosen. This is compared against the RD cost for
optimal rectangular partitioning of the 16×16 block to

θ

ρ

MV1

MV2

Fig.1. Parameters defining a geometric motion partition.

> TCSVT 4442 <

4

determine whether geometric partitioning should be used for
that particular block.
For the 32×32 and 64×64 blocks, a similar strategy is followed
with a slight variation. For these block sizes, instead of
evaluating the SAD motion cost for each geometric partition, it
is evaluated for a subset of the possible geometric partitions.
This subset is obtained by subsampling ρ and θ by 2. Thus,

the SAD motion cost is evaluated for 128 geometric partitions
for a 32×32 block and 256 geometric partitions for a 64×64
block. Then, for each extended block size, 2 geometric
partitions having the best SAD motion costs are chosen. Let
one of the geometric partitions chosen have parameters 1ρ and

1θ . Then, true RD costs for geometric partitions with

11 11 +−= ρρρ , and oo 25112511 111 .,,. +−= θθθθ are

evaluated using the EPZS search. Similar process is repeated
for the other geometric partition chosen in the first stage. The
geometric partition with the lowest RD cost is chosen and
compared against the RD cost for the optimal rectangular
partitioning of the corresponding block size.

b) Overlapped motion compensation for geometric
partitions

Since two different motion vectors are used for motion
compensation inside a block with geometric partition, the
pixels at the partition boundary may have large discontinuities
that can produce visual artifacts similar to blockiness.
Furthermore, since the geometric partition boundary may not
be aligned with the macroblock and sub-macroblock
boundaries, it is likely that the deblocking filter may not be
able to reduce the blockiness resulting from the geometric
motion partitions. To alleviate this, we apply the principle
behind overlapped block motion compensation (OBMC) to the
geometric motion partitions. Let the two regions created by a
geometric partition be denoted by region 1 and region 2. Let
the corresponding motion vectors be denoted by 1MV and

2MV , respectively. A pixel from region 1 (2) is defined to be

a boundary pixel if any of its four connected neighbors (left,
top, right, and bottom) belongs to region 2 (1). Fig. 3 shows an
example where dark mesh squares belong to the boundary of

region 1 and light mesh squares belong to the boundary of
region 2. If a pixel is not a boundary pixel, normal motion
compensation is performed using the appropriate motion
vector. But if a pixel is a boundary pixel, motion compensation
is performed using a weighted sum of the motion predictions
from the two motion vectors, 1MV and 2MV . The weights are

32 for the region containing the boundary pixel and 31 for

the other region. The overlapped boundaries improve the
visual quality of the reconstructed video while also providing
small coding gain.
3) Motion accuracy

The AVC/H.264 standard allows motion vectors having
1/4th pixel accuracy. But the 1/4th pixel positions are
interpolated using bilinear interpolation from full pixel and
half pixel positions. Using separate filters designed to perform
1/4th and 3/4th pixel interpolation results in more accurate
interpolation. Furthermore, in certain sequences and certain
regions, it is beneficial to have higher (1/8th pixel) accuracy
motion vectors. For the proposed video codec, for each region
in a motion partition, the motion accuracy can be adaptively
chosen to be 1/4th pixel or 1/8th pixel. We will refer to this as
adaptive motion vector resolution. The choice of the motion
vector resolution is signaled to the decoder. The details of how
to encode the motion vector resolution flag as well as motion
vector differences will be provided in section II.E.4).

The motion search at the encoder is modified as follows.
For every block in a motion partition, first a 1/4th pixel
accuracy motion vector is found using EPZS (or any other
preferred motion search algorithm). Then, as shown in Fig. 4,
eight surrounding 1/8th pixel positions are searched to find the
best 1/8th pixel accuracy motion vector. The motion vector
(1/4th or 1/8th pixel accuracy) with the lowest RD cost is
selected. Thus, the added complexity for adaptive motion
vector resolution is mainly due to the interpolation and the RD
cost calculations corresponding to the eight 1/8th pixel
positions. The details of interpolation will be discussed in the
next subsection.
4) Interpolation

a) Luma interpolation

In the proposed video codec, single pass switched

Fig. 2. Reusing rectangular partition motion vectors for geometric partition
motion search.

Fig. 3. Overlapped motion compensation for geometric partitions.

> TCSVT 4442 <

5

interpolation filters with offsets (single pass SIFO) are used to
interpolate the reference frame to 1/4th pixel accuracy for the
luma component. The single pass SIFO filters were first
proposed in [16]. First we review the interpolation methods
used in the AVC/H.264 standard. Then, the proposed
interpolation method is described in greater detail.

(1) AVC/H.264 interpolation

The AVC/H.264 standard uses 1/4th pixel accuracy for the
luma motion vectors. Fig. 5 shows the integer-pixel samples
(also called full pixel, shown in gray blocks with upper-case
letters) from the reference frame, which are used to interpolate
the fractional pixel (shown in white blocks with lower-case
letters) samples. There are altogether 15 fractional pixel
positions, labeled “a” through “o” in Fig. 5. To obtain luma
component at 1/2 pixel positions (b, h, and j), a 6-tap Wiener
filter with coefficients [1, -5, 20, 20, -5, 1]/32 is used. For
position j, the interpolation filter is applied first in the
horizontal direction and then, in the vertical direction. To
obtain luma component at 1/4th pixel locations, bilinear
interpolation is used. To perform bilinear interpolation, the
neighboring 1/2 pixel positions are calculated. These are
rounded and clipped to the original input bit-depth (for
example 8 bits). After that, the 1/4th pixel locations are
obtained by averaging using upward rounding. The
combination of intermediate rounding and clipping of the 1/2
pixel positions and the biased upward rounding during bilinear
interpolation effectively reduces the precision of the
interpolation filters for the 1/4th pixel positions. By
maintaining the 1/2 pixel positions in 16 bit or higher
precision, the interpolation of the 1/4th pixel positions can be
improved by eliminating intermediate rounding and clipping of
the 1/2 pixel positions to input bit-depth and the biased
upward rounding during bilinear interpolation This is referred
to as high precision interpolation filtering. This was first
proposed in [16] and used in the proposed video codec.

(2) Single pass switched Interpolation Filters
with offsets (single pass SIFO)

The basic idea behind switched interpolation filters is that at
each of the 15 fractional pixel positions, an interpolation filter
can be chosen from a set. For each fractional pixel position,
the choice of the filter is signaled at the slice level. In addition,
choice of offsets is also signaled for each slice as described in

the following subsection. The advantage of this interpolation
method is that unlike various adaptive interpolation filters
proposed in the literature, it does not require multiple passes
through the frames. The frequency responses of filters allowed
for each fractional pixel position need to have enough diversity
to cater to different type of video content. At the same time,
having too many filters in each set can increase the amount of
information necessary to be signaled at the slice level. In our
proposed codec, at each fractional pixel location, four different
interpolation filters are permitted. Thus, four different filter
sets are defined, each set consisting of 15 filters, one for each
fractional pixel position. The full pixel position is not filtered.

1. Filter set 0: This uses high precision filtering with the
same filters as in AVC/H.264 with the exception of position
‘g’, where a non-separable filter, as shown in Table I, is used
(followed by right shift by 7 bits).

TABLE I
FILTER FOR FRACTIONAL PIXEL POSITION ‘G’ FOR FILTER SET 0.

0 5 5 0
5 22 22 0
5 22 22 5
0 5 5 0

2. Filter set 1 and set 2: These filter sets are derived by
using a set of training video sequences. For each set, positions
a, b, and c use a six-tap horizontal filters. Positions d, h, and l
use six-tap vertical filters. For the remaining fractional pixel
positions, 4×4 non-separable filters are used. Each of the non-
separable filters has horizontal, vertical or diagonal symmetry.

3. Filter set 3: This filter set uses an 8-tap separable filter in
both horizontal and vertical directions for all the fractional
pixel positions. Separate 8-tap filters are used for 1/4th pixel,
1/2 pixel, and 3/4th pixel positions. The three 8-tap filters are
shown in Table II. After filtering, the result is normalized by
adding 128 and shifting the result down by 8 bits and then
clipped to the pixel range.

Fig. 4. Motion search for 1/8th pixel accuracy.

Fig. 5. Fractional pixel positions for 1/4th pixel accuracy motion interpolation.

> TCSVT 4442 <

6

TABLE II
FILTER COEFFICIENTS FOR FILTER SET 3.

1/4th pixel
position

[-3 12 -37 229 71 -21 6 -1]

1/2 pixel
position

[-3 12 -39 158 158 -39 12 -3]

3/4th pixel
position

[-1 6 -21 71 229 -37 12 -3]

(3) Direct filtering for 1/8th pixel accuracy
motion vectors

To perform interpolation with 1/8th pixel accuracy, our
proposal uses direct filters for computationally efficiency.
When IBDI is not being used, it also provides coding gains
because of lack of intermediate rounding and clipping of the
1/4th pixel positions as well as lack of biased upward rounding
in averaging. For any 1/8th pixel position, these filters are
derived from the filters used for the 1/4th pixel positions
assuming bilinear interpolation. For determining the 1/8th pixel
filters, it is assumed that filter set 3 is used for all the 1/4th
pixel positions. As an example, for 3/8th pixel position the
following 8-tap direct filter used is used:

[-6, 24, -76, 387, 229, -60, 18, -4].
Here we have not shown explicit rounding and clipping at

the end of the filtering process. Thus, interpolation for any
1/8th pixel position requires filtering with at most two 8-tap
filters (horizontal and vertical). The proposed codec uses no
offset associated with the 1/8th pixel positions. This is done
due to the trade-off between the amount of side information
that needs to be sent and coding gain. For chroma
interpolation, the motion vectors in the proposed codec were
restricted to 1/8th pixel accuracy and high precision filtering
was used with 6-tap filters. The details can be found in [6].

(4) Choice of filter set and offsets

Before encoding a frame, the encoder selects a filter for
each fractional pixel position based on statistics gathered from
previously encoded frames of the same type (P or B). In our
proposal, the filter that minimizes the sum of squared
prediction errors for the previously encoded frames is selected.
For each fractional pixel position, the minimization is
performed only on blocks whose motion vector points to that
fractional pixel location. The choice of filter remains the same
irrespective of the reference frame in which the motion search
is being performed. For reference frame 0 from each list,
offsets are sent to the decoder for each of the 15 fractional
pixel positions as well as the full pixel position For other
reference frames only one frame offset is sent. The offsets
provide significant gains for video sequences with illumination
changes.
5) Transforms for inter-prediction residuals

We will first discuss transforms for encoding inter-
prediction residuals for non-geometric motion partitions. For
motion partitions of size 8×8 and lower, the transform choices
are identical to AVC/H.264. We reuse the 4×4 and 8×8
transforms from AVC/H.264. As in AVC/H.264, these

transforms can not be applied across motion boundaries. For
motion partition of sizes 16×16, 16×8, and 8×16, in addition
to the 4×4 and 8×8 transforms, it is possible to apply a larger
transform that is matched to the size of the motion partition.
As an example, for an 8×16 motion partition, the transform
choices are 4×4, 8×8, and 8×16. The choice of the transform is
signaled to the decoder. For motion partitions of size 64×64,
64×32, and 32×32, only 16×16 transform can be used. Here
we have adopted a variation of the encoder simplification
suggested in [17] to disallow 4×4 and 8×8 transforms in
motion partitions larger than 16×16. This speeds up the
encoder substantially with very little effect on compression
efficiency. We now will describe the design of the 16×16,
16×8, and 8×16 transforms, hereafter referred to as Big
Transforms, in greater detail.

Our proposal uses separable two-dimensional (2-D)
transforms discussed in [18]. The transforms are integer scaled
transforms that approximate Type II DCT [19]. Each
transform coefficient needs to be multiplied by a scale factor
to make the resulting transform orthogonal. The design of the
proposed transforms is fully recursive and based on the LLM
factorization for the 4 point and 8 point transforms [20].

a) Proposed 16-point transform

Fig. 6 shows detailed flow-graph of the proposed one
dimensional (1-D) 16 point transform. The upper (even) part
of the transform uses a scaled 8-point transform (shown with a
bounding box with solid lines), which in turn uses a scaled 4-
point transform (shown with a bounding box with dotted
lines). Similarly, the lower (odd) part of the transform uses two
scaled 4-point transforms. The scaling factors for the 16-point
transform are shown on the right hand side. The factors A, B,
… , N satisfy the following relations:

and,, 222222 FEDCBA +=+=+= ςξ
(3)

.22222222 NMLKJIHG +=+=+=+=η

This factorization involves 728164 =+× additions and
3643816 =×++ multiplications, which matches the

complexity of the best known rotation-based factorizations
[19], [20], and has the advantage of a fully recursive structure,
reusing scaled 4-point transforms. It should be noted that the
above matrix only specifies a scaled 16-point transform, and that
in order to map its output into full transform coefficients, we will
need to multiply them by the scaling factors shown on the right
hand side in Fig. 6.

b) Transform Matrix

For the 1-D 16 point transform we choose the butterfly
factors shown in Table III. Here, in order to balance the
dynamic range across the transform, we have introduced right
shifts after multiplies. The transform coefficients now fit in the
range [-1.25, 1.25], which is tight enough for practical
purposes. Since constants A..N are integers (or dyadic rational
numbers), we can replace multiplications with simple series of
additions and shift operations. Moreover, we can do it for each

> TCSVT 4442 <

7

pair of multiplies performed for each input variable in
butterflies. The complexity of the entire multiplier-less 16-
point transform with such factors becomes 110 additions and
48 shifts. The details can be found in [21]. On the other hand,
on platforms with fast multiplications one can also implement
it by using 72 additions and 32 multiplications by simply
following the flow graph.

TABLE III
BUTTERFLY FACTORS FOR THE 1-D 16 POINT TRANSFORM.

42=A 45=B 3219=C 324=D

3216=E 3211=F 6434=G 6427=H

6428=I 6421=J 6442=K 6411=L

6443=M 646=N

c) Proposed 1-D 8 point transform

We reuse the scaled 8 point transform from the upper (even)
part of the 16 point transform. The butterfly factors A – F are
the same as in Table III. The 1-D 8 point transform needs 26
additions and 12 multiplications. If desired, the multiplication
can be replaced by additions and shifts as in the case of the 16
point transform.

When implementing the transforms, to avoid accumulation
of rounding errors, we pre-shift the 2-D input matrix to the left
by 8 bits. After the transform, the transform coefficients are
shifted to the right by the same amount after appropriate
rounding. All the bigger transforms, namely, 16×16, 16×8, and
8×16 can be implemented with 32 bits of precision.

C. Quantization

Quantization methods are unchanged from AVC/H.264.
Since 16×16, 16×8, and 8×16 transforms used in the proposed
codec are scaled transforms, the scaling factor for each
transform coefficient is absorbed into the quantization step. On
the encoder side, our proposal uses RD based quantization
(RDO_Q) first proposed in [22] and discussed in greater detail
in [23]. The RD based quantization mainly consists of 2 parts:

1. Trellis-based optimization of the quantization operation
for transform coefficients: In the trellis-based optimization, the
quantizer index is chosen based on the RD cost of coding that
index in a Lagrangian framework. Due to the manner in which
entropy coding of quantized coefficients is performed in
AVC/H.264, it is sometimes advantageous to quantize a
coefficient to zero instead of rounding to the nearest quantizer
level. This is because the rate may be lowered sufficiently to
offset the increase in distortion. In the proposed video codec,
to keep the computation complexity manageable, only 3
candidate quantizer indices are considered in most cases.
These are 0, round-up, and round-down. For CABAC, the
optimization is performed in 2 steps. In the first step, the last
non-zero coefficient is chosen. Then in the 2nd step, the
quantizer indices for individual coefficients are chosen.

2. Quantizing and coding a block with multiple quantizer
step-sizes: Each block is encoded using a range of QP values.
Then the QP value with the best RD cost is chosen and
signaled to the decoder. In the proposed codec, for I and P

slices, only a single QP value is used. For B slices, 3 QP
values are used: (QP, QP+2, QP+3).

D. In-loop filtering

1) Deblocking filter
Our proposal uses the same deblocking filter as AVC/H.264

with suitable modification for BigBlocks. Recall that for block
sizes greater than 16×16, only 16×16 transform is used. Thus,
for 32×32 and 64×64 blocks, deblocking filter is applied only
along the 16×16 block edges. This reduces the computational
complexity for the deblocking operation if the bigger blocks
are chosen frequently.
2) Adaptive loop filtering

We used a modified form of the quadtree-based adaptive
loop filter (QALF) proposed in [24]. Instead of a single filter
used in QALF, our proposal uses a set of M filters. The set of
M filters is transmitted to the decoder for each frame or a
group of frames (GOP). Whenever the QALF segmentation
map indicates that a block should be filtered, for each pixel, a
specific filter from the set is chosen based on a measure of
local characteristic of an image, called the activity measure.
Our proposal uses the sum-modified Laplacian measure as
described in [24]. The sum-modified Laplacian was first
proposed in [25] as a measure of image focus. It is a discrete
approximation to the modified Laplacian. The sum-modified
Laplacian for pixel),(ji is calculated as follows:

∑ ∑
−= −=

++++−+++ ++−=
K

Kk

L

Ll
ljkiljkiljki RRRji ,,,),var(112

,,,, 112 +++−++++ +− ljkiljkiljki RRR (4)

where jiR , refers to the reconstructed frame value for pixel

),(ji . A 7×7),(3=LK neighborhood is used for calculation

of the sum-modified Laplacian. The ranges of sum-modified
Laplacian measure have to be sent to the decoder. Filter
coefficients are coded using prediction from coefficients
transmitted for previous frames. Our proposal uses 5×5, 7×7,
and 9×9 filters with diamond shape support and symmetry as
shown in Fig. 7. The numbers inside the squares indicate
symmetry. Thus, pixels with index 1 have the same filter
coefficient. The diamond shape support was chosen because it
offers a good trade-off between complexity and performance.
Adaptive loop filtering for chroma is the same as that in the

0

4 5

1

4

1

5

3

0

2

6

2

3

Fig. 7. 5×5 symmetric filter with diamond support.

> TCSVT 4442 <

8

original QALF.

E. Entropy coding

Context adaptive binary arithmetic coding (CABAC) [26] is
used in the proposed video codec for encoding of information
such as block type, coded block pattern, motion vectors and
transform coefficients. The context is based on the neighboring
blocks in a similar way as in AVC/H.264. The differences
from AVC/H.264 are highlighted below.
1) Macroblock type

For a 64×64 block, a new syntax element, mb64_typemb64_typemb64_typemb64_type, is
introduced to indicate the motion partition for the block. This
can be SKIP, DIRECT, 64×64, 64×32, 32×64 or P32x32. A
mb64_typemb64_typemb64_typemb64_type of P32×32 for a 64×64 block indicates that the
block is split into four 32×32 blocks. Then, for each 32×32
block, a new syntax element, mb32_typemb32_typemb32_typemb32_type, is sent indicating
the motion partition for the block. An mb32_typemb32_typemb32_typemb32_type of P16×16
for a 32×32 block indicates that the block is split into four
16×16 blocks. In that case, for each 16×16 block, the
macroblock type, mb_typemb_typemb_typemb_type, is sent to the decoder.
2) Coded block pattern (cbp64 and cbp32)

For a 64×64 block, a new one bit syntax element, cbp64cbp64cbp64cbp64, is
introduced to indicate whether the whole 64×64 block has any
nonzero coefficients. A nonzero cbp64cbp64cbp64cbp64 value indicates that
there is at least one nonzero transform coefficient. If cbp64cbp64cbp64cbp64 is
1, for each 32×32 block, cbpcbpcbpcbp32323232 is encoded to indicate whether
the whole 32×32 block has any nonzero coefficients. If cbpcbpcbpcbp32323232
is 1, for each 16×16 block, the current AVC/H.264 cbpcbpcbpcbp is
encoded to indicate its status.
3) Change in luminance quantizer step-size (mb64_delta_qp
and mb32_delta_qp)

Our proposal permits the luminance quantizer step-size to
change as follows. If a 64×64 block is partitioned into 4
separate 32×32 blocks, each 32×32 block can have its own
QP. If a 32×32 is further partitioned into four 16×16 blocks,
each 16×16 block can also have its own QP. This information
is signaled to the decoder using delta_qpdelta_qpdelta_qpdelta_qp syntax. For a 64x64
block, if the mb64_type is not P32×32, mb64_delta_qpmb64_delta_qpmb64_delta_qpmb64_delta_qp is
encoded to signal the relative change in luminance quantizer
step-size with respect to the block on the top-left side of the
current block. The decoded value of mb64_delta_qpmb64_delta_qpmb64_delta_qpmb64_delta_qp is
restricted to be in the range [-26, 25]. The mb64_delta_qpmb64_delta_qpmb64_delta_qpmb64_delta_qp
value is inferred to be equal to 0 when it is not present for any
macroblock (including P_Skip and B_Skip macroblock types).
The value of luminance quantization for the current block,

YQP , is derived as

.52)%52ltamb64_qp_de(QPQP prevY,Y ++= (5)

where prevY,QP is the luminance quantization parameter of

the previous 64x64 block in the decoding order in the current
slice. For the first 64×64 block in the slice, prevY,QP is set

equal to the slice QP sent in the slice header.
If mb64_typemb64_typemb64_typemb64_type is P32×32, for each 32×32 block, the same

process is repeated. That is, if mb32_typemb32_typemb32_typemb32_type is not P16×16,
mb32_delta_qpmb32_delta_qpmb32_delta_qpmb32_delta_qp is encoded. Otherwise, delta_qpdelta_qpdelta_qpdelta_qp for each

16×16 macroblock is sent to the decoder as in AVC/H.264. It
should be noted that when delta_qpdelta_qpdelta_qpdelta_qp is signaled at the 64×64 or
32×32 block size, it is applicable to all the blocks in the
motion partition.
4) Adaptive Motion Vector Resolution

For each block in a motion partition, a motion vector
resolution flag is encoded. A value of 1 (0) implies 1/8th pixel
(1/4th pixel) motion vector resolution is used for that motion
vector. We will describe the contexts used for CABAC
encoding of motion vector resolution flag and motion vector
differences (MVD).

For CABAC encoding of the motion vector resolution flag,
four contexts are used. The contexts are defined based on the
motion resolution of neighboring partitions. Let A be the left
neighboring partition and let B be the upper neighboring
partition. The precise definition of neighboring partitions is the
same as that used in the AVC/H.264 MVD encoding. The four
contexts used to encode the motion vector resolution flag for
the current block are:

1. Both A and B have 1/8th pixel motion accuracy.
2. A has 1/4th pixel motion accuracy and B has 1/8th pixel

motion accuracy.
3. A has 1/8th pixel motion accuracy and B has 1/4th pixel

motion accuracy.
4. Both A and B have 1/4th pixel motion accuracy.
The encoder always maintains the motion vector (MV) and

MVD information at 1/8th pixel resolution (by left-shift if
necessary). Then, the MV prediction for the current block is
formed with 1/8th pixel accuracy. If the current block has only
1/4th pixel motion accuracy, the MV prediction is converted to
1/4th pixel accuracy by right-shifting and then the MVD is
formed. On the other hand if the current block has 1/8th pixel
motion accuracy, the MVD is formed directly by subtracting
the MV prediction from the motion vector for the current
block. Once the MVD is formed, if the current block has 1/4th
pixel accuracy, for all the neighboring blocks used for
determining the MVD contexts, the MVDs are converted to
1/4th pixel accuracy. Similar procedure is followed for 1/8th
pixel accuracy. The encoding of MVD is performed as
specified in AVC/H.264.

III. EXPERIMENTAL RESULTS

A. Objective performance

In this section, the quantitative results from our proposal in
response to CfP are presented. The objective performance is
compared with the Alpha and Beta anchors [5] generated by
JM 16.2 [27] for constraint sets 1 and 2, respectively.
Constraint set 1 (CS1) results for the proposed codec are
compared with the alpha anchor. Constraint set 2 (CS2) results
for the proposed codec are compared with the beta anchor.
Five RD points were generated for each sequence. The results
are reported in terms of BD-rate [28], [29]. In Table IV, the
results are reported by averaging the high BD-rate and the low
BD-rate. For the calculation of high BD-rate, the four highest
rates are used and for the calculation of low BD-rate, four

> TCSVT 4442 <

9

lowest rates are used.
TABLE IV

CODING GAIN IN TERMS OF BD-RATE RELATIVE TO THE ALPHA ANCHOR FOR

CONSTRAINT SET 1 AND BETA ANCHOR FOR CONSTRAINT SET 2.

Class Seq. Name
CS1

BD-rate
(%)

CS2
BD-rate

(%)

Class A
4kx2k

Traffic -32.2

PeopleOnStreet -19.9

 Avg_4kx2k -26.1

Class B
1080p

Kimono1 -39.6 -42.6

ParkScene -27.8 -27.9

Cactus -30.9 -31.7

BasketballDrive -35.3 -41.1

BQTerrace -40.0 -48.0

 Avg_1080p -34.7 -38.3

Class C
WVGA

BasketballDrill -30.7 -28.7

BQMall -32.7 -31.4

PartyScene -32.7 -26.3

RaceHorses -28.3 -27.4

 Avg_WVGA -31.1 -28.5

Class D
WQVGA

BasketballPass -22.3 -23.0

BQSquare -44.0 -34.0

BlowingBubbles -26.7 -16.1

RaceHorses -20.5 -20.4

 Avg_WQVGA -28.4 -23.4

Class E
720p

Vidyo1 -46.4
Vidyo3 -41.4
Vidyo4 -41.3

 Avg_720p -43.0

 Overall Avg -30.9 -33.0

B. Subjective performance

All the proposals that were submitted in response to the CfP
underwent rigorous subjective evaluations. Table V compares
the average mean opinion score (MOS) for the proposed codec
against the corresponding AVC/H.264 anchors for different
resolutions. From the table it can be seen that the average gain
on MOS scale is in the range 1.1 – 2.6. The proposed codec
scored highly in subjective evaluations and was among the
best-performing CfP proposals.

TABLE V
COMPARISON OF THE SUBJECTIVE PERFORMANCE OF THE PROPOSED CODEC

AGAINST ALPHA AND BETA ANCHORS FOR CS1 AND CS2, RESPECTIVELY.

Class

Average MOS
CS1 CS2

Proposed
codec

Alpha
anchor

Proposed
codec

beta
anchor

1080p 8.2 6.5 7.5 5.3
WVGA 6.2 4.5 5.5 3.9

WQVGA 6.4 5.3 5.4 4.1
720p 6.8 4.2

C. Complexity comparison

We have discussed the complexity of the different tools
used in the proposed codec throughout the paper. Here we
provide an estimate of the average encoding and decoding
times for the proposed codec against JM 16.2.

The encodings were performed on a Linux cluster. The
encoders for the proposed codec and JM 16.2 were compiled
in 32 bits. The encoder software for the proposed codec was
single-threaded with no assembly code. When averaged over
different bit rates, sequences and constraint sets, the average
encoding time for the proposed codec was roughly 3 times
higher than that for JM 16.2.

The decoding was performed on a Windows PC running 32-
bit Windows XP. The decoder software for the proposed
codec was single-threaded with no assembly code and
compiled using Microsoft® Visual Studio® 2005 Professional
Edition. The I/O times (for output YUV file generation) were
included in decoding times measurements. The average
decoding time for the proposed codec was roughly 3 times
higher than that for JM 16.2.

IV. CONCLUSION

In this paper, we have presented a video codec based on
extended macroblock sizes, improved interpolation and
flexible motion representation. This codec constituted
Qualcomm’s response to CfP for the next generation video
coding standard. In this paper, the key features of the proposed
codec have been described, including detailed algorithm
descriptions. We have presented objective and subjective
performance results for the proposed codec in comparison to
the anchors generated by the AVC/H.264 reference software
codec JM16.2. The proposed codec scored highly in both
subjective evaluations and objective metrics and was among
the best-performing CfP proposals.

REFERENCES

[1] “Joint Call for Proposals on Video Compression Technology”, ISO/IEC
JTC1/SC29/WG11/N11113, January 2010.

[2] “Joint Call for Proposals on Video Compression Technology”, ITU-T
Q6/16 document, VCEG-AM91, January 2010.

[3] “Advanced video coding for generic audiovisual services”, ITU-T
Recommendation H.264, Mar 2009.

[4] “Information technology -- Coding of audio-visual objects -- Part 10:
Advanced Video Coding”, ISO/IEC 14496-10:2009.

[5] Jens-Rainer Ohm and Gary Sullivan, “Special section on the Call for
Proposals on High Efficiency Video Coding Standardization,” IEEE
Trans. Circuits Syst. Video Technol. this issue.

[6] Marta Karczewicz, Peisong Chen, Rajan Joshi, Xianglin Wang, Wei-
Jung Chien, Rahul Panchal, “Video coding technology proposal by
Qualcomm Inc” JCT-VC Contribution JCTVC-A121, Dresden,
Germany, April 2010

[7] JMKTA software, http://iphome.hhi.de/suehring/tml/download/KTA/
[8] T. Chujoh, R. Noda “Internal bit depth increase for coding efficiency,”

ITU-T Q6/16 document, VCEG-AE13, Marrakech, Morocco, January
2007.

[9] T. Chujoh, N. Wada and G. Yasuda, “Quadtree-based Adaptive Loop
Filter,” ITU-T Q.6/SG16 document, C181, Geneva, January 2009.

[10] Y. Ye and M. Karczewicz, “Improved Intra Coding,” ITU-T Q.6/SG16,
Contribution C257, Geneva, Switzerland, June 2007.

> TCSVT 4442 <

10

[11] Y. Ye and M. Karczewicz, “Improved Intra Coding,” VCEG
Contribution VCEG-AG11, Y. Ye and M. Karczewicz, Shenzhen,
China, 20 October, 2007.

[12] Peisong Chen, Yan Ye, and Marta Karczewicz, “Video Coding Using
Extended Block Sizes,” ITU-T Q.6/SG16 document, C123, Jan. 2009.

[13] Ò. Divorra, P. Yin, C. Dai, and X. Li, “Geometry-adaptive block
partitioning for video coding,” Proc. IEEE Int. Conf. Acoustics, Speech,
and Signal Processing, 2007, pp. I-657-660.

[14] Ò. Divorra, P. Yin and C. Gomila "Geometry-adaptive Block
Partitioning", ITU-T Q.6/SG16 document, VCEG-AF10, Geneva,
Switzerland, April 2007.

[15] Alexis M. Tourapis, “Enhanced predictive zonal search for single and
multiple frame motion estimation,” Proc. Visual Communications and
Image Processing, pp. 1069 - 1079, 2002.

[16] Marta Karczewicz, Yan Ye, Peisong Chen, Giovanni Motta, “Single
Pass Encoding using Switched Interpolation Filters with Offset,” -T
Q6/16 document, VCEG-AJ29, San Diego, CA, USA, Oct. 2008.

[17] Tomoyuki Yamamoto, Yukinobu Yasugi, Tomohiro Ikai, “Further result
on constraining transform candidate in Extended Block Sizes,” VCEG
Contribution VCEG-AL19, London, UK / Geneva, CH, July 2009.

[18] R. Joshi, Y. Reznik, and M. Karczewicz, “Simplified Transforms for
Extended Block Sizes,” VCEG Contribution VCEG-AL19, London, UK
/ Geneva, CH, July 2009.

[19] V.Britanak, P.Yip, K.R.Rao, “Discrete Cosine and Sine Transforms:
General Properties, Fast Algorithms and Integer Approximations”,
Academic Press, 2006.

[20] C. Loeffler, A. Ligtenberg, and G. S. Moschytz. "Algorithm-architecture
mapping for custom DCT chips." in Proc. Int. Symp. Circuits Syst.
(Helsinki, Finland), June 1988, pp. 1953-1956.

[21] R. Joshi, Y. Reznik, and M. Karczewicz, “Efficient large size transforms
for high performance video coding,” Proc. SPIE 7798, pp. 779831, 1-7,
August 2010.

[22] M. Karczewicz, Y. Ye and I. Chong, Rate distortion optimized
quantization, VCEG Contribution, VCEG-AH21, Jan. 2008

[23] Marta Karczewicz; Peisong Chen; Yan Ye; Rajan Joshi, “R-D based
quantization in H.264,”, Applications of Digital Image Processing
XXXII, Andrew G. Tescher, Editors, 744314, San Diego, June 2009.

[24] Wei-Jung Chien, Marta Karczewicz, “Adaptive Filter Based on
Combination of Sum-Modified Laplacian Filter Indexing and Quadtree
Partitioning,” VCEG Contribution VCEG-AL27r1, London, UK /
Geneva, CH, July 2009.

[25] S. K. Nayar and Y. Nakagawa, “Shape from focus,” IEEE Trans. Pattern
Analysis and Machine Intelligence, vol. 16, no. 8, pp. 824-831, 1994.

[26] Detlev Marpe, Heiko Schwarz, and Thomas Wiegand, “Context-Based
Adaptive Binary Arithmetic Coding in the AVC/H.264 video
compression standard,” IEEE Transactions on Circuits and Systems for
Video Technology, vol. 13, No. 7, pp. 620-636, July 2003.

[27] H.264/AVC Reference Software (JM16.2),
http://iphome.hhi.de/suehring/tml/download/old_jm/jm16.2.zip

[28] G. Bjøntegaard, “Calculation of average PSNR differences between RD-
curves”, VCEG contribution VCEG-M33, Austin, USA, April 2001

[29] G. Bjøntegaard, "Improvements of the BD-PSNR model", VCEG
contribution, VCEG-AI11, Berlin, Germany, July, 2008.

E

C

0x

1x

2x

3x

4x

5x

6x

7x

A

B

C

D

EF

F

A

8x

9x

10x

11x

12x

13x

14x

15x

A

B

A

G

G

H

I

I

J

J

K

K

L

L

M

M

N

N

A

B

A

1
04 X

1
84 X

1
42 2

X
ξ

1
122 2

Xξ

1
144 Xζ

1
62 2

X
ζ

1
102 2

X
ζ

1
24 Xζ

1
12 2

X
η

1
94 Xη

1
52 2

X
ξη

1
132 2

X
ξη

1
152 2

X
η

1
32 2

X
ξη

1
112 2

X
ξη

1
74 Xη

Fig. 6. Detailed flow graph for the proposed 1-D 16 point transform.

