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M
obile phones have evolved into powerful 
image and video processing devices equipped 
with high-resolution cameras, color displays, 
and hardware-accelerated graphics. They are 
also increasingly equipped with a global posi-

tioning system and connected to broadband wireless networks. 
All this enables a new class of applications that use the camera 
phone to initiate search queries about objects in visual proximi-
ty to the user (Figure 1). Such applications can be used, e.g., for 
identifying products, comparison shopping, finding information 
about movies, compact disks (CDs), real estate, print media, or 

artworks. First deployments of such systems include Google 
Goggles [1], Nokia Point and Find [2], Kooaba [3], Ricoh iCandy 
[4]–[6], and Amazon Snaptell [7]. 

Mobile image-retrieval applications pose a unique set of 
challenges. What part of the processing should be performed 
on the mobile client, and what part is better carried out at the 
server? On the one hand, transmitting a Joint Photographic 
Experts Group (JPEG) image could take few seconds over a 
slow wireless link. On the other hand, extraction of salient 
image features is now possible on mobile devices in seconds. 
There are several possible client–server architectures. 

■ The mobile client transmits a query image to the server. 
The image-retrieval algorithms run entirely on the server, 
including an analysis of the query image. 
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 ■ The mobile client processes 
the query image, extracts fea-
tures, and transmits feature 
data. The image-retrieval algo-
rithms run on the server using 
the feature data as query. 

 ■ The mobile client downloads data from the server, and all 
image matching is performed on the device.
One could also imagine a hybrid of the approaches men-

tioned above. When the database is small, it can be stored 
on the phone, and image-retrieval algorithms can be run 
locally [8]. When the database is large, it has to be placed 
on a remote server and the retrieval algorithms are run 
remotely. 

In each case, the retrieval framework has to work within 
stringent memory, computation, power, and bandwidth 
 constraints of the mobile device. The size of the data transmit-
ted over the network needs to be as small as possible to reduce 
network latency and improve user experience. The server laten-
cy has to be low as we scale to large databases. This article 
reviews the recent advances in content-based image retrieval 
with a focus on mobile applications. We first review large-scale 
image retrieval, highlighting recent progress in mobile visual 
search. As an example, we then present the Stanford Product 
Search system, a low-latency interactive visual search system. 
Several sidebars in this article invite the interested reader to dig 
deeper into the underlying algorithms. 

ROBUST MOBILE IMAGE RECOGNITION
Today, the most successful algorithms for content-based image 
retrieval use an approach that is referred to as bag of features 
(BoFs) or bag of words (BoWs). The BoW idea is borrowed from 
text retrieval. To find a particular text document, such as a Web 
page, it is sufficient to use a few well-chosen words. In the 
 database, the document itself can be likewise represented by a 

bag of salient words, regardless 
of where these words appear in 
the text. For images, robust 
local features take the analogous 
role of visual words. Like text 

retrieval, BoF image retrieval does not consider where in the 
image the features occur, at least in the initial stages of the 
retrieval pipeline. However, the variability of features extracted 
from different images of the same object makes the problem 
much more challenging. 

A typical pipeline for image retrieval is shown in Figure 2. 
First, the local features are extracted from the query image. The 
set of image features is used to assess the similarity between 
query and database images. For mobile applications, individual 
features must be robust against geometric and photometric dis-
tortions encountered when the user takes the query photo from 
a different viewpoint and with different lighting compared to 
the corresponding database image. 

Next, the query features are quantized [9]–[12]. The parti-
tioning into quantization cells is precomputed for the database, 
and each quantization cell is associated with a list of database 
images in which the quantized feature vector appears some-
where. This inverted file circumvents a pairwise comparison of 
each query feature vector with all the feature vectors in the data-
base and is the key to very fast retrieval. Based on the number of 
features they have in common with the query image, a short list 
of potentially similar images is selected from the database. 

Finally, a geometric verification (GV) step is applied to the 
most similar matches in the database. The GV finds a coherent 
spatial pattern between features of the query image and the can-
didate database image to ensure that the match is plausible. 
Example retrieval systems are presented in [9]–[14]. 

For mobile visual search, there are considerable challenges 
to provide the users with an interactive experience. Current 
deployed systems typically transmit an image from the client to 
the server, which might require tens of seconds. As we scale to 
large databases, the inverted file index becomes very large, with 
memory swapping operations slowing down the feature-match-
ing stage. Further, the GV step is computationally expensive 
and thus increases the response time. We discuss each block of 
the retrieval pipeline in the following, focusing on how to meet 
the challenges of mobile visual search. 

[FIG1] A snapshot of an outdoor mobile visual search system 
being used. The system augments the viewfinder with 
information about the objects it recognizes in the image taken 
with a camera phone. 

Database

Query
Image

Feature
Extraction

Feature
Matching

Geometric
Verification

[FIG2] A Pipeline for image retrieval. Local features are extracted 
from the query image. Feature matching finds a small set of 
images in the database that have many features in common 
with the query image. The GV step rejects all matches with 
feature locations that cannot be plausibly explained by a change 
in viewing position. 

MOBILE IMAGE-RETRIEVAL 
APPLICATIONS POSE A UNIQUE 

SET OF CHALLENGES.
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FEATURE EXTRACTION

INTEREST-POINT DETECTION
Feature extraction typically starts by finding the salient 
interest points in the image. For robust image matching, we 
desire interest points to be repeatable under perspective 
transformations (or, at least, scale changes, rotation, and 
translation) and real-world lighting variations. An example of 
feature extraction is illustrated in Figure 3. To achieve scale 
invariance, interest points are typically computed at multiple 
scales using an image pyramid [15]. To achieve rotation 
invariance, the patch around each interest point is canoni-
cally oriented in the direction of the dominant gradient. 
Illumination changes are compensated by normalizing the 
mean and standard deviation of the pixels of the gray values 
within each patch [16]. 

Numerous interest-point detectors have been proposed in 
the literature. Harris Corners [17], scale-invariant feature 
 transform (SIFT) difference-of-Gaussian (DoG) [15] key 
points, maximally stable extremal regions (MSERs) [18], 
Hessian affine [16], features from accelerated segment test 
(FAST) [19], and Hessian blobs [20] are some examples. The 
different interest-point detectors provide different tradeoffs in 
repeatability and complexity. SIFT DoG and other affine inter-
est-point detectors are slow to compute but are highly repeat-
able. The speeded up robust feature (SURF) interest-point 
detector provides significant speed up over DoG interest-point 
detectors by using box filters and integral images for fast com-
putation. However, the box filter approximation causes signifi-
cant anisotropy, i.e., the matching performance varies with 
the relative orientation of query and database images [21]. 
The FAST corner detector is an extremely fast interest-point 
detector that offers very low repeatability. In [22], Mikolajczyk 
et al. compare the different interest-point detectors in a com-
mon framework. 

The Stanford Product Search system can perform feature 
extraction and compression on the client to reduce system 

latency. Current generation smartphones have limited compute 
power, typically only a tenth of what a desktop personal com-
puter provides. We require interest points that are fast to com-
pute and highly repeatable. We choose the Hessian-blob 
detector sped up with integral images [20], which provide a 
good tradeoff of repeatability and complexity. For video graph-
ics array (VGA) images, Hessian-blob interest-point detection 
can be carried out in approximately 1 s on current-generation 
smartphones [14]. 

FEATURE DESCRIPTOR COMPUTATION
After interest-point detection, we compute a visual word 
descriptor on a normalized patch. We would like descriptors to 
be robust to small distortions in scale, orientation, and lighting 
conditions. Also, we require descriptors to be discriminative, 
i.e., characteristic of an image or a small set of images. 
Descriptors that occur in almost every image (the equivalent of 
the word and in text documents) would not be useful for 
retrieval. Since the publication of Lowe’s article in 1999 [23], 
the highly discriminative SIFT descriptor remains the most 
popular descriptor in computer vision. Other examples of fea-
ture descriptors are gradient location and orientation histo-
gram (GLOH) by Mikolajczyk and Schmid [22], SURF by Bay et 
al. [24], and our own compressed histogram of gradients 
(CHoGs) [25], [26]. Winder and Brown [27], [28] and 
Mikolajczyk et al. [22] evaluate the performance of the differ-
ent descriptors. 

As a 128-dimensional descriptor, the SIFT descriptor is 
conventionally stored as 1,024 b (8 b/dimension). However, the 
size of SIFT descriptor data from an image is typically larger 
than the size of the JPEG-compressed image itself. Several 
compression schemes have been proposed to reduce the bit 
rate of SIFT descriptors. In our recent work [29], we survey 
the different SIFT compression schemes. They can be broadly 
categorized into schemes based on hashing [30]–[32], trans-
form coding [29], [33] and vector quantization (VQ) [10], [11], 
[34]. We note that hashing schemes such as locality-sensitive 
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[FIG3] Illustration of feature extraction. We first compute interest points (e.g., corners and blobs) at different scales. The patches at 
different scales are oriented along the dominant gradient. Feature extraction is followed by computation of feature descriptors that 
capture the salient characteristics of the image around the interest point. Here, we illustrate how the CHoG descriptor is computed. The 
scaled and oriented canonical patches are divided into localized spatial bins, which gives robustness to interest-point localization error. 
The distribution of gradients in each spatial bin is compressed to obtain a very compact description of the patch. (a) Interest-point 
detection. (b) Computation of feature descriptors. 
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CHOG: A LOW BIT-RATE DESCRIPTOR 
CHoG builds upon the principles of HoG descriptors with the 
goal of being highly discriminative at low bit rates. Figure 3 
illustrates how the CHoG descriptors are computed. 
• The patch is divided into spatial bins, which pro-

vides robustness to interest-point localization error. 
We divide the patch around each interest point 
into soft log-polar spatial bins using DAISY 
 configurations proposed in [28]. The  log-polar con-

figuration has been shown to be more effective 
than the square-grid configuration used in SIFT [22], 
[28], [46]. 

• The joint 1dx, dy 2  gradient histogram in each spatial 
bin is directly captured into the descriptor, as illustrat-
ed in Figure S1. CHoG histogram binning exploits the 
skew in  gradient statistics that are observed for 
patches extracted around interest points. 
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[FIG S1] The joint 1dx, dy 2 gradient distribution (a) over a large number of cells and (b) its contour plot. The greater variance in y 
axis results from aligning the patches along the most dominant gradient after interest-point detection. (The quantization bin 
constellations (c) VQ-3, (d) VQ-5, (e) VQ-7, and (f) VQ-9 and their associated Voronoi cells are shown. 

hashing (LSH), similarity-sensitive coding (SSC), or spectral 
hashing (SH) do not perform well at low bit rates. 
Conventional transform-coding schemes based on principal 
component analysis (PCA) do not work well because of the 
highly non-Gaussian statistics of the SIFT descriptor. The VQ 
schemes based on the product quantizer [34] or a tree-struc-
tured vector quantizer [10] are complex and require storage of 
large codebooks on the mobile device. 

In [33], we also explore transform coding of the 
64-dimensional SURF descriptor, which also performs poorly 
at low bit rates. Other popular approaches used to reduce the 

size of descriptors typically employ dimensionality reduction 
via PCA or linear discriminant analysis (LDA) [35], [36]. Ke 
and Sukthankar [35] investigate dimensionality reduction of 
patches directly via PCA. Hua et al. [36] propose a scheme 
that uses LDA. Winder and Brown [28] combine the use of 
PCA with additional optimization of gradient and spatial bin-
ning parameters as part of the training step. The disadvan-
tages of PCA and LDA approaches are its high computational 
complexity and the risk of overtraining for descriptors from 
a particular data set. Further, with PCA and LDA, descriptors 
cannot be compared in the compressed domain if entropy 
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coding is employed. The 60-b  MPEG-7 trace–transform 
descriptor [37] and binary robust independent elementary 
features (BRIEFs) [38] are other examples of low bit-rate 
descriptors proposed in recent literature. Johnson proposes a 
generalized set of techniques to compress local features in 
his recent work [39]. Philbin et al. [40] use learning tech-
niques to generate a 32-B descriptor that performs on par 
with SIFT. 

Through our experiments, we came to realize that simply 
compressing an off-the-shelf descriptor does not lead to the 
best-rate-constrained image-retrieval performance. One can 

do better by designing a descriptor with compression in mind. 
Of course, such a descriptor still has to be robust and highly 
discriminative. Ideally, it would permit descriptor compari-
sons in the compressed domain for speedy feature matching. 
To meet all these requirements simultaneously, we designed 
the CHoG descriptor [25], [26]. Descriptors based on the dis-
tribution of gradients within a patch of pixels have been 
shown to be highly discriminative [22], [27]. Lowe [15], Bay et 
al. [24], Dalal and Triggs [41], Freeman and Roth [42], and 
Winder et al. [28] have proposed histogram of gradient (HoG)-
based descriptors. 

• CHoG retains the information in each spatial bin as a dis-
tribution. This allows the use of more effective distance 
measures such as Kullback Leibler (KL) divergence, and 
more importantly, allows us to apply quantization and 
compression schemes that work well for distributions, to 
produce compact descriptors. 
Typically, nine to 13 spatial bins and three to nine gra-

dient bins are chosen, resulting in 27- to 117-dimensional 
descriptors. For compressing the descriptor, we quantize 
the gradient histogram in each spatial bin individually. In 
[25] and [26], we have explored several novel quantiza-
tion schemes that work well for compressing distributions: 
quantization by Huffman coding, type coding, and opti-
mal Lloyd-Max VQ. Here, we briefly discuss one of the 
schemes: type coding, which is linear in complexity to the 
number of histogram bins and performs close to optimal 
Lloyd-Max VQ. 

Let m represent the number of histogram bins. m varies 
from three to nine for the CHoG descriptor. Let P5 3p1,
p2, c, pm 4 [ R1

m be the original distribution as described by 
the gradient histogram, and Q5 3q1, q2, c, qm 4 [ R1

m be the 
quantized probability distribution. First, we construct a lattice 
of distributions (or types) Qn5Q 1k1, c, km 2  with 
 probabilities 

 qi5
ki

n
,  ki, n [ Z1,  a

i
ki5 n. (1)

We show several examples of such sets in m5 3 dimensions 
in Figure S2. 

The parameter n controls the fidelity of quantization, 
and higher the value of n parameter, higher the fidelity. 
Second, after quantizing the distribution P, we compute an 
index for the type. The total number of types K 1m, n 2  is the 
number of partitions of n into m terms k11c1 km5 n

 K 1m, n 2 5 an1m2 1
m2 1

b. (2)

The algorithm that maps a type to its index fn: 5k1, c,
km6 S 30, K 1m, n 2 2 1 4 is described in [26]. 

Finally, we encode the index in each spatial cell with 
fixed-length or entropy codes. Fixed-length encoding pro-
vides the benefit of compressed domain matching at the 
cost of a small performance hit. The type quantization and 
coding scheme described here performs close to optimal 
Lloyd-Max VQ and does not require storage of codebooks 
on the mobile client. The CHoG descriptor with type coding 
at 60 b matches the performance of the 128-dimensional 
1,024-b SIFT descriptor [26]. 

[FIG S2] Type lattices and their Voronoi partitions in three dimensions 1m 5 3, n 5 1, 2, 3 2 .
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The CHoG descriptor is 
designed to work well at low 
bit rates (see “CHoG: A Low 
Bit-Rate Descriptor”). CHoG 
achieves a performance of 
1,024-b SIFT at approximately 
60 b/descriptor. CHoG is lower dimensional than SIFT 
because of the more effective gradient and spatial binning 
schemes. The compact bit representation is a result of lossy 
quantization and compression schemes that are employed 
to the descriptor. The CHoG descriptor is a concatenation 
of distributions (a set of values that sum to one). The prob-
lem of lossy quantization of distributions had received little 
attention in the compression literature prior to the work on 
CHoG. In our work [25], [26], [43], [44], we explore the 
problem of quantization and compression of distributions 
in detail. Further, we propose schemes that map distribu-
tions directly to fixed-length codes, which enables match-
ing in the compressed domain. The CHoG descriptor is 
compared with several other low bit-rate descriptors in the 
literature in [45]. 

At 60 b/descriptor, CHoG descriptor data are an order of 
magnitude smaller than SIFT- or JPEG-compressed images and 
can be transmitted much faster over slow wireless links. A small 
descriptor also helps if the database is stored in the mobile 
device. The smaller the descriptor, the more features can be 
stored in limited memory. 

As illustrated in Figure 3, each interest point has a loca-
tion, scale, and orientation associated with it. Interest-point 
locations are needed in the GV step to validate potential candi-
date matches. The location of each interest point is typically 
stored as two numbers: x and y coordinates in the image at 
subpixel accuracy [15]. In a floating point representation, each 
feature location would require 64 b and 32 b each for x and y. 
This is comparable in size to the CHoG descriptor itself. We 
have developed a novel histogram coding scheme to encode 
the x, y coordinates of feature descriptors [47] (see “Location 
Histogram Coding”). With location histogram coding (LHC), 
we can reduce location data by an order of magnitude com-
pared with their floating point representation, without loss in 
matching accuracy. 

A few hundred descriptors per query image are sufficient for 
achieving high matching accuracy for large databases [14], [26]. 
Table 1 summarizes data reduction using CHoG and LHC for 
500 descriptors per image. 

FEATURE INDEXING 
AND MATCHING
For a large database of images, 
comparing the query image 
against every database image 
using pairwise feature matching 

is infeasible. A database with millions of images might con-
tain billions of features. A linear scan through the database 
would be time consuming for interactive mobile visual search 
applications. Instead, we must use a data structure that can 
quickly return a short list of the database candidates most 
likely to match the query image. The short list may contain 
false positives as long as the correct match is included. Slower 
pairwise comparisons can be subsequently performed on just 
the short list of candidates rather than the entire database. 

Many data structures have been proposed for efficiently 
indexing all the local features in a large image database. Lowe 
proposes approximate nearest neighbor (ANN) search of SIFT 
descriptors with a best-bin-first strategy [15]. One of the most 
popular methods is Sivic and Zisserman’s BoF approach [9]. The 
BoF codebook is trained by k-means clustering of many training 
descriptors. During a query, scoring the database images can be 
made fast by using an inverted file index associated with the 
BoF codebook. To generate a much larger codebook, Nister and 
Stewenius use hierarchical k-means clustering to create a 
vocabulary tree (VT) [10]. The VT is explained in greater detail 
in “VT and Inverted Index.” Alternatively, Philbin et al. use ran-
domized k-d trees to partition the feature descriptor space [12]. 
Subsequent improvements in tree-based quantization and ANN 
search include greedy N-best paths [49], query expansion [50], 
efficient updates over time [51], soft binning [12], and 
Hamming embedding [11]. 

The problem with hard quantization for k means is that 
many matching features that should get quantized to the same 
node end up in different cells due to quantization error. Soft 
binning schemes proposed in the literature alleviate this prob-
lem and improve the matching accuracy. The advantage of the 
hierarchical scoring approach in [10] is that the soft assign-
ment is given by the structure of the tree and no additional 
information needs to be stored for each feature. However, the 
authors in [12] note that the quantization artifacts are not 
completely removed with hierarchical quantization. To 
improve  performance, Philbin et al. [12] propose a soft binning 
scheme, where each feature is assigned to n nearest visual 
words. However, this increases the size of the inverted index by 
n-fold. The greedy N-best paths scheme [49] also reduces the 
quantization error but increases the query time, as N best 
paths need to be explored in the quantization step. Jegou et al. 
[11] have proposed to combine k-means quantization and 
binary vector signatures. First, the feature space is divided into 
a relatively small number of Voronoi cells (20,000) using k 
means. Each cell is then divided into n independent hyper-
planes resulting in 2n  subcells. Jegou et al. suggest that 
Hamming embedding  provides better quantization. However, 
this is achieved at the expense of higher memory requirements 

[TABLE 1] DATA REQUIRED TO REPRESENT 
AN IMAGE FOR MOBILE VISUAL SEARCH.

SCHEME DATA (kB)

JPEG-COMPRESSED IMAGE 30–40 
SIFT + UNCOMPRESSED LOCATION DATA 66.4 
CHOG + UNCOMPRESSED LOCATION DATA 7.6 
CHOG + COMPRESSED LOCATION DATA 4.0 

CHoG IS LOWER DIMENSIONAL 
THAN SIFT BECAUSE OF THE MORE 
EFFECTIVE GRADIENT AND SPATIAL 

BINNING SCHEMES.
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and higher query times, as longer inverted files need to be tra-
versed due to the smaller vocabulary size. 

As database size increases, the amount of memory used to 
index the database features can become very large. Thus, devel-
oping a memory-efficient indexing structure is a problem of 
increasing interest. Chum et al. use a set of compact min-hash-
es to perform near-duplicate image retrieval [52], [53]. Zhang et 
al. decompose each image’s set of features into coarse and 
refinement signatures [54]. The refinement signature is 
 subsequently indexed by an LSH. Schemes that take advantage 
of the structure of the database have been proposed recently in 
[55]–[57]. These schemes are typically applied to databases 
where there is a lot of redundancy, e.g., each object is represent-

ed by images taken from multiple view points. The size of the 
inverted index is reduced by using geometry to find matching 
features across images, and only retaining useful features and 
discarding irrelevant clutter features. 

To support the popular VT-scoring framework, inverted 
index compression methods for both hard-binned and soft-
binned VTs have been developed by us [58], as explained in 
“Inverted Index Compression.” The memory for BoF image 
 signatures can be alternatively reduced using the mini-BoF 
approach [59]. Very recently, visual word residuals on a small 
BoF codebook have shown promising retrieval results with low 
memory usage [60], [61]. The residuals are indexed either with 
PCA and product quantizers [60] or with LSH [61]. 

LOCATION HISTOGRAM CODING 
LHC is used to compress feature location data efficiently. 
We note that the interest points in the images are spatially 
clustered, as shown in Figure S3. 

To encode location data, we first generate a two-
dimensional (2-D) histogram from the locations of the 
descriptors (Figure S4). We divide the image into spatial 
bins and count the number of features within each spatial 
bin. We compress the binary map, indicating which spatial 
bins contains features, and a sequence of feature counts, 
representing the number of features in occupied bins. We 
encode the binary map using a trained context-based 
arithmetic coder, with the neighboring bins being used as 
the context for each spatial bin. 

LHC provides two key benefits. First, encoding the 
locations of a set of N features as the histogram reduces 
the bit rate by log(N!) compared to encoding each feature 
location in sequence [47]. Here, we exploit the fact that 
the features can be sent in any order. Consider the sample 
space that represents N features. There are N! number of 
codes that represent the same feature set because the 
order does not matter. Thus, if we fix the ordering for the 

feature set, i.e., using the LHC scheme described earlier, 
we can achieve a bit savings of log(N!). For example, for a 
feature set of 750 features, we achieve a rate savings of 
log(750!)/750 z 8 b/feature. 

Second, with LHC, we exploit the spatial correlation 
between the locations of different descriptors, as illustrat-
ed in Figure S3. Different interest-point detectors result in 
different coding gains. In our experiments, Hessian Laplace 
has the highest gain followed by SIFT and SURF interest-
point detectors. Even if the feature points are uniformly 
scattered in the image, LHC is still able to exploit the 
ordering gain, which results in log(N!) saving in bits. 

In our experiments, we found that quantizing the 
(x, y) location to four-pixel blocks is sufficient for GV. If 
we use a simple fixed-length coding scheme, then the 
rate will be log(640/4) 1 log(640/4) z 14 b/feature for a 
VGA size image. Using LHC, we can transmit the same 
location data with z 5 b/descriptor; z 12.5 times reduc-
tion in data compared to a 64-b floating point represen-
tation and z 2.8 times rate reduction compared to 
fixed-length coding [48].

[FIG S3] Interest-point locations in images tend to cluster 
spatially. 

[FIG S4] We represent the location of the descriptors using 
a location histogram. The image is first divided into evenly 
spaced blocks. We enumerate the features within each spatial 
block by generating a location histogram.
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GEOMETRIC VERIFICATION
The GV typically follows the feature matching step. In 
this stage, we use location information of query and data-
base features to confirm that the feature matches are 
consistent with a change in viewpoint between the two 
images. We perform  pairwise matching of feature descrip-
tors and evaluate geometric consistency of correspon-
dences as shown in Figure 4. The  geometric transform 
between query and database image is estimated using 
robust regression techniques such as RANSAC [66] or the 

Hough transform [15]. The transformation can be repre-
sented by the fundamental matrix that incorporates 
three-dimensional (3-D) geometry, or simpler homogra-
phy or affine models. The GV tends to be  computationally 
expensive, which limits the list of candidate images to a 
small number. 

A number of groups have investigated ways to speed up 
the GV process. Semilocal geometric constraints have 
been proposed in [9], [13], [67], and [68] to either filter 
out or propose feature matches. The authors Jegou et al. 

VT AND INVERTED INDEX 
A VT with an inverted index can be used to quickly com-
pare images in a large database against a query image. If 
the VT has L levels excluding the root node and each 
interior node has C children, then a fully balanced VT 
contains K5 C 

L leaf nodes. Figure S5 shows a VT with 
L5 2, C5 3, and K5 9. The VT for a particular database is 
constructed by performing hierarchical k-means cluster-
ing on a set of training feature descriptors representative 
of the database, as illustrated in Figure S5(a). Initially, C 
large clusters are generated from all the training descrip-
tors by ordinary k means with an appropriate distance 
function like L2 norm or symmetric KL divergence. Then, 
for each large cluster, k-means clustering is applied to the 
training descriptors assigned to that cluster to generate C 
smaller clusters. This recursive division of the descriptor 
space is repeated until there are enough bins to ensure 
good classification performance. Typically, L5 6 and 
C5 10 are selected [10], in which case the VT has K5 106 
leaf nodes. 

The inverted index associated with the VT maintains 
two lists per leaf node, as shown in Figure S5(b). For node 
k, there is a sorted array of image IDs 5ik1, ik2, c, ikNk

6 
 in  dicating which Nk database images have visited that 
node. Similarly, there is a corresponding array of counts 
5ck1, ck2, c, ckNk

6 indicating the frequency of visits. During 
a query, a database of N total images can be quickly scored 
by traversing only the nodes visited by the query descrip-
tors. Let s 1 i 2  be the similarity score for the ith database 
image. Initially, prior to visiting any node, s 1 i 2  is set to 
zero. Suppose node k is visited by the query descriptors a 
total of qk times. Then, all the images in the inverted list 
5ik1, c, ikNk

6 for node k will have their scores incremented 
according to 

 s 1 ikj 2 :5 s 1 ikj 2 1wk
2 ckj qk

Sikj
Sq

, j5 1, c, Nk, (3)

where wk is an inverse document frequency (IDF) weight 
used to penalize often-visited nodes, Sikj

 is a normalization 
factor for database image i

kj
, and Sq  is a normalization fac-

tor for the query image. 

wk5 log 1N/Nk 2 , (4)

 Sikj
5 a

K

n51
wn 1count for DB image ikj at node n 2 , (5)

aq5 a
K

n51
wn 1count for query image at node n 2 . (6)

Scores for images at the other nodes visited by the query 
image are updated similarly. The database images attain-
ing the highest scores s 1 i 2  are judged to be the best 
matching candidates and kept in a short list for further 
verification. 

Soft binning [12] can be used to mitigate the effect of 
quantization errors for a large VT. As seen in Figure S5(a), 
some descriptors lie very close to the boundary between 
two bins. When soft binning is employed, the visit counts 
are then no longer integers but rather fractional values. 
For each feature descriptor, the m nearest leaf nodes in 
the VT are assigned fractional counts 

 ci5 1/C # exp 120.5di
2/s2 2 ,  i5 1, c, m, (7)

 C5 a
m

i51
exp 120.5di

2/s2 2 , (8)

where di is the distance between the i th closest leaf node 
and the feature descriptor, and S is appropriately chosen 
to maximize classification accuracy. 

i21 i22 i23
c21 c22 c23
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[FIG S5] (a) Construction of a VT by hierarchical k-means 
clustering of training feature descriptors. (b) VT and the 
associated inverted index.
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[11] use weak geometric consistency checks to rerank 
images based on the orientation and scale information of 
all features. The authors in [53] and [69] propose incor-
porating geometric information into the VT matching or 
hashing step. In [70] and [71], the authors investigate 
how to speed up RANSAC estimation itself. Philbin et al. 
[72] use single pairs of matching features to propose 
hypotheses of the geometric transformation model and 
verify only possible sets of hypotheses. Weak geometric 
consistency checks are typically used to rerank a  larger 
candidate list of images, before a full GV is performed on 
a shorter candidate list. 

To speed up GV, one can add a geometric reranking step 
before the RANSAC GV step, as illustrated in Figure 5. In 
[73], we propose a reranking step that 
incorporates geometric information 
directly into the fast index lookup stage 
and use it to reorder the list of top 
matching images (see “Fast Geometric 
Reranking”). The main advantage of the 
scheme is that it only requires x, y fea-
ture location data and does not use scale 

INVERTED INDEX COMPRESSION 
For a database containing 1 million images and a VT that uses 
soft binning, each image ID can be stored in a 32-b unsigned 
integer, and each fractional count can be stored in a 32-b 
float in the inverted index. The memory usage of the entire 
inverted index is gk

k51 Nk
# 64 bits, where Nk is the length of 

the inverted list at the kth leaf node. For a database of 1 mil-
lion product images, this amount of memory reaches 10 GB, a 
huge amount for even a modern server. Such a large memory 
footprint limits the ability to run other concurrent processes 
on the same server, such as recognition systems for other 
databases. When the inverted index’s memory usage exceeds 
the server’s available random access memory (RAM), swap-
ping between main and virtual memory occurs, which signifi-
cantly slows down all processes. 

A compressed inverted index [58] can significantly reduce 
memory usage without affecting recognition accuracy. First, 
because each list of IDs 5ik1, ik2, c, ikNk

6 is sorted, it is more 
efficient to store consecutive ID differences 5dk15 ik1,
dk25 ik22 ik1, c, dkNk

5 ikNk
2 ik1Nk2126 in place of the IDs. This 

practice is also commonly used in text retrieval [62]. Second, 
the fractional visit counts can be quantized to a few repre-
sentative values using Lloyd-Max quantization. Third, the dis-
tributions of the ID differences and visit counts are far from 
uniform, so variable-length coding can be much more rate 
efficient than fixed-length coding. Using the distributions of 
the ID differences and visit counts, each inverted list can be 
encoded using an arithmetic code (AC) [63]. Since keeping 
the decoding delay low is very important for interactive 
mobile visual search applications, a scheme that allows ultra-
fast decoding is often preferred over AC. The carryover code 

[64] and recursive bottom-up complete (RBUC) code [65] have 
been shown to be at least ten times faster in decoding than 
AC, while achieving comparable compression gains as AC. The 
carryover and RBUC codes attain these speedups by enforcing 
word-aligned memory accesses. 

Figure S6(a) compares the memory usage of the invert-
ed index with and without compression using the RBUC 
code. Index compression reduces memory usage from near-
ly 10 GB to 2 GB. This five times reduction leads to a sub-
stantial speedup in server-side processing, as shown in 
Figure S6(b). Without compression, the large inverted 
index causes swapping between main and virtual memory 
and slows down the retrieval engine. After compression, 
memory swapping is avoided and memory congestion 
delays no longer contribute to the query latency. 
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[FIG S6] (a) Memory usage for inverted index with and 
without compression. A five times savings in memory is 
achieved with compression. (b) Server-side query latency 
(per image) with and without compression. The RBUC code 
is used to encode the inverted index. 
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[FIG5] An image retrieval pipeline can be greatly sped up by incorporating a geometric 
reranking stage.

[FIG4] In the GV step, we match feature descriptors pairwise and 
find feature correspondences that are consistent with a geometric 
model. True feature matches are shown in red. False feature 
matches are shown in green. 
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or orientation information as in [11]. As scale and orientation 
data are not used, they need not be transmitted by the client, 
which reduces the amount of data transferred. We typically 
run fast geometric reranking on a large set of candidate data-
base images and reduce the list of images that we run 
RANSAC on. 

Before discussing system performance results, we provide a 
list of important references for each module in the matching 
pipeline in Table 2. 

SYSTEM PERFORMANCE
What performance can we expect for a mobile visual search 
system that incorporates all the ideas discussed so far? To 
answer this question, we have a closer look at the experimen-
tal Stanford Product Search System (Figure 6). For evalua-
tion, we use a database of 1 million CD, digital versatile disk 
(DVD), and book cover images, and a set of 1,000 query images 
(500 3 500 pixel resolution) [75] exhibiting challenging pho-
tometric and geometric distortions, as shown in Figure 7. For 

[TABLE 2] SUMMARY OF REFERENCES FOR MODULES IN A MATCHING PIPELINE.

MODULE LIST OF REFERENCES 

FEATURE EXTRACTION HARRIS AND STEPHENS [17], LOWE [15], [23], MATAS ET AL. [18], MIKOLAJCZYK ET AL. [16], [22], 
DALAL AND TRIGGS [41], ROSTEN AND DRUMMOND [19], BAY ET AL. [20], WINDER ET AL. [27], [28], 
CHANDRASEKHAR ET AL. [25], [26], PHILBIN ET AL. [40] 

FEATURE INDEXING AND MATCHING SCHMID AND MOHR [13], LOWE [15], [23], SIVIC AND ZISSERMAN [9], NISTÉR AND STEWÉNIUS [10], 
CHUM ET AL. [50], [52], [53], YEH ET AL. [51], PHILBIN ET AL. [12], JEGOU ET AL. [11], [59], [60], ZHANG ET AL. [54]
CHEN ET AL. [58], PERRONNIN [61], MIKULIK ET AL. [55], TURCOT AND LOWE [56], LI ET AL. [57] 

GV FISCHLER AND BOLLES [66], SCHAFFALITZKY AND ZISSERMAN [74], LOWE [15], [23], CHUM ET AL. [53], [70], [71] 
FERRARI ET AL. [68], JEGOU ET AL. [11], WU ET AL. [69], TSAI ET AL. [73] 

FAST GEOMETRIC RERANKING 
We have proposed a fast geometric reranking algorithm in 
[73] that uses x, y locations of features to rerank a short list 
of candidate images. First, we generate a set of potential 
feature matches between each query and database image 
based on VT-quantization results. After generating a set of 
feature correspondences, we calculate a geometric score 
between them. The process used to compute the geometric 
similarity score is illustrated in Figure S7. We find the dis-
tance between the two features in the query image and 
the distance between the corresponding matching features 
in the database image. The ratio of the distance corre-
sponds to the scale difference between the two images. 
We repeat the ratio calculation for features in the query 
image that have matching database features. If there exists 
a consistent set of ratios (as indicated by a peak in the his-
togram of distance ratios), it is more likely that the query 
image and the database image match. 

The geometric reranking is fast because we use the 
VT-quantization results directly to find potential feature 
matches and use a really simple similarity scoring scheme. 

The time required to calculate a geometric similarity score 
is one to two orders of magnitude less than using RANSAC. 
Typically, we perform fast geometric reranking on the top 
500 images and RANSAC on the top 50 ranked images. 

(a) (b) (c) (d)

log (÷)

[FIG S7] The location geometric score is computed as 
follows: (a) features of two images are matched based on 
VT quantization, (b) distances between pairs of features 
within an image are calculated, (c) log-distance ratios of the 
corresponding pairs (denoted by color) are calculated, and 
(d) histogram of log-distance ratios is computed. The 
maximum value of the histogram is the geometric similarity 
score. A peak in the histogram indicates a similarity 
transform between the query and database image. 

[FIG6] Stanford Product Search system. Because of the large database, the image-recognition server is placed at a remote location. In 
most systems [1], [3], [7], the query image is sent to the server and feature extraction is performed. In our system, we show that by 
performing feature extraction on the phone we can significantly reduce the transmission delay and provide an interactive experience.
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the client, we use a Nokia 5800 mobile phone with a 300-MHz 
central processing unit (CPU). For the recognition server, we 
use a Linux server with a Xeon E5410 2.33-GHz CPU and 
32 GB of RAM. We report results for both 3G and wireless local 
area network (WLAN) networks. For 3G, experiments are con-
ducted in an AT&T 3G  wireless network, averaged over several 
days, with a total of more than 5,000 transmissions at indoor 
locations where such an image-based retrieval system would 
be typically used. 

We evaluate two different modes of operation. In send fea-
tures mode, we process the query image on the phone and 
transmit compressed query features to the server. In send image 
mode, we transmit the query image to the server, and all opera-
tions are performed on the server. 

We discuss results of the three key aspects that are critical 
for mobile visual search applications: retrieval accuracy, system 
latency, and power. A recurring theme throughout this section 
will be the benefits of performing feature extraction on the 
mobile device compared to performing all processing on a 
remote server. 

RETRIEVAL ACCURACY
It is relatively easy to achieve high precision (low false posi-
tives) for mobile visual search applications. By requiring a 
minimum number of feature matches after RANSAC GV, we 
can avoid false positives entirely. To avoid false-positive 
 matches, we set a minimum number of matching features 
after RANSAC GV to 12, which is high enough to avoid false 
positives. We define recall as the percentage of query images 
correctly retrieved. Our goal then is to maximize recall at a 
negligibly low false-positive rate. 

Figure 8 compares the recall for the three schemes: send 
features (CHoG), send features (SIFT), and send image 
(JPEG) at precision one. For the JPEG scheme, the bit rate 
is varied by changing the quality of compression. For the 
SIFT scheme, we extract the SIFT descriptors on the mobile 
device and transmit each descriptor uncompressed as 
1,024 b. For the CHoG scheme, we need to transmit about 
60 b/descriptor across the network. For SIFT and CHoG 
schemes, we sweep the recall-bit rate curve by varying the 
number of descriptors transmitted. For a given budget of 

(a)

(b)

[FIG7] Example image pairs from the data set. (a) A clean database picture is matched against (b) a real-world picture with various 
distortions. 
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features, the descriptors with 
the highest Hessian response 
are transmitted. The descrip-
tors are transmitted in the 
order imposed by the LHC 
scheme discussed in “Location 
Histogram Coding.”

First, we observe that a recall of 96% is achieved at the 
highest bit rate for challenging query images even with a 
million images in the database. Second, we observe that the 
performance of the JPEG scheme rapidly deteriorates at low 
bit rates. The performance suffers at low bit rates as the 
interest-point detection fails due to JPEG-compression arti-
facts. Third, we note that transmitting uncompressed SIFT 
data is almost always more expensive than transmitting 
JPEG-compressed images. Finally, we observe that the 
amount of data for CHoG descriptors is an order of magni-
tude smaller than JPEG images or SIFT descriptors at the 
same retrieval accuracy. 

SYSTEM LATENCY
The system latency can be broken down into three components: 
processing delay on client, transmission delay, and processing 
delay on server. 

CLIENT- AND SERVER-PROCESSING DELAY
We show the time taken for the different operations on the 
client and server in Table 3. The send features mode requires 
approximately 1 s for feature extraction on the client. 
However, this increase in client-processing time is more than 
compensated by the decrease in transmission latency, com-
pared to send image, as illustrated in Figures 9 and 10. On the 
server, using VT matching with a compressed inverted index, 
we can search through a million image database in 100 ms. 
We perform GV on a short list of 50 candidates after fast geo-
metric reranking of the top 500 candidate images. We can 
achieve ,1 s server processing latency while maintaining 
high recall. 

TRANSMISSION DELAY
The transmission delay depends on the type of network used. 
In Figure 10, we observe that the data transmission time is 
insignificant for a WLAN network because of the high 

 bandwidth available. However, 
the transmission time turns out 
to be a bottleneck for 3G net-
works. In Figure 9, we present 
the experimental results for 
sending data over a 3G wireless 
network. We vary query data 

sizes from that of typical compressed query features (3–4 kB) 
to typical JPEG query images (50 kB) to learn how query size 
affects transmission time. The communication time-out was 
set to 60 s. We have conducted the experiment continuously 
for several days. We tested at three different locations, typical 
locations where a user might use the visual search application. 

The median and average transmission latency of our exper-
iments are shown in Figure 9. Sending the compressed query 
features typically takes 3–4 s. The time required to send the 
compressed query image is several times longer and varies 
significantly at different locations. However, the transmission 
delay does not include the cases when the communication 
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[FIG9] Measured transmission latency (a) and time-out 
percentage (b) for transmitting queries of different size over a 
3G network. Indoor (I) is tested indoors with poor connectivity. 
Indoor (II) is tested indoors with good reception. Outdoor is 
tested outside of buildings. 

[TABLE 3] PROCESSING TIMES.

CLIENT-SIDE OPERATIONS TIME (S)

IMAGE CAPTURE 1–2 
FEATURE EXTRACTION AND COMPRESSION 
(FOR SEND IMAGE MODE)

1–1.5 

SERVER-SIDE OPERATIONS TIME (MS)

FEATURE EXTRACTION 
(FOR SEND IMAGE MODE)

100 

VT MATCHING 100 
FAST GEOMETRIC RERANKING (PER IMAGE) 0.46 
GV (PER IMAGE) 30 

THE SYSTEM LATENCY CAN BE BROKEN 
DOWN INTO THREE COMPONENTS: 

PROCESSING DELAY ON CLIENT, 
TRANSMISSION DELAY, AND 

PROCESSING DELAY ON SERVER.
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fails entirely, which increases 
with the query size. We show 
the percentage of transmissions 
that experience a time-out in 
Figure 9(b). The time-out per-
centage of transmitting the 
compressed query features is much lower than that of trans-
mitting compressed query images because of their smaller 
query size. 

END-TO-END LATENCY
We compare end-to-end latency for the different schemes in 
Figure 10. For WLAN, we observe that ,1 s query latency is 
achieved for the send image mode. The send features mode is 
slower because of the processing delay on the client. With such 
fast response times over WLAN, we are able to operate our sys-
tem in a continuous mobile augmented reality mode [76]. 

For 3G networks, network latency remains the bottleneck as 
seen in Figure 10. In this scenario, there is a significant benefit 
in sending compressed features. The send features mode reduc-
es the system latency by two times compared with the send 
image mode. 

ENERGY CONSUMPTION
On a mobile device, we are constrained by the energy of the bat-
tery, and hence, conserving the energy is critical. We measure 
the average energy consumption associated with a single query 
using the Nokia Energy Profiler (http://store.ovi.com/con-
tent/17374) on the Nokia 5800 phone. 

We show the average energy consumption for a single query 
using send features and send image for WLAN and 3G network 
connections in Figure 11. For 3G connections, the energy 
 consumed in the send image mode is almost three times as 
much as send features. The additional time needed to transmit 

image data compared with fea-
ture data results in a greater 
amount of energy being con-
sumed. For WLAN transmission, 
send image consumes less ener-
gy, since feature extraction on 

the mobile client is not required. 
Finally, we compute the number of image queries the mobile 

can send before the battery runs out of power. A typical phone 
battery has voltage of 3.7 V and a capacity of ,1,000 mAh (or 
,13.3 kJ). Hence, for 3G connections, the maximum number of 
images that the mobile can send is 13.3 kJ/70 J 5 ,190 total 
queries. For send features, we would be able to perform 13.3 
kJ/21 J 5 ,630 total queries, which is three times as many que-
ries as the send image can perform. This difference becomes 
even more important as we move toward streaming augmented 
reality applications. 

CONCLUDING REMARKS
Mobile visual search is ready for prime time. State-of-the-art 
systems today achieve more than 95% recall at negligible false-
positive rate for databases with more than one million classes, a 
recognition performance that is sufficient for many applica-
tions. The key is robust, and discriminative local features are 
used in a bag-of-visual-words approach. Robustness against 
scale changes and rotation is achieved by interest-point detec-
tion algorithms that robustly yield not only a location but also 
feature-scale and dominant orientation. This permits feature 
descriptors computed on canonical patches in a local coordi-
nate system. Robustness against brightness and contrast varia-
tions is achieved by normalizing the patch variance and using 
only the image gradient to compute feature descriptors. This 
takes care of much of the variability among corresponding 
query and database features, but not all. Foreshortening affects 
the feature descriptor, and correspondences can no longer be 
established if the angle becomes extreme. Adding foreshortened 

[FIG11] Average energy consumption of a single query using 
send image and send features mode for various types of 
transmission.
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FEATURE COMPRESSION IS A KEY 
PROBLEM FOR VISUAL SEARCH TO 

WORK WITH MOBILE DEVICES.
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descriptors to the database or 
using affine invariant descriptors 
are possible remedies. Robust -
ness against blur (particularly 
motion blur) is typically lacking 
but would be highly desirable. By 
using clever hierarchical data structures such as VTs, fast 
retrieval can be achieved in less than 1 s on a typical desktop 
CPU for databases of more than one million images. Such speed 
requires a precomputed inverted file index that is stored 
 entirely in RAM, and seeking data on a hard disk would slow 
down the retrieval considerably. Inverted index compression 
can be used to fit even larger data structures in RAM. For large 
databases, VTs must be combined with a GV stage to avoid false 
positives. Geometric consistency checks are computationally 
expensive, so it makes sense to use simple geometric reranking 
to reduce the number of candidate images. 

Feature compression is a key problem for visual search to 
work with mobile devices. Sending a JPEG image as a query 
over a slow wireless link can take a longer time; it is better to 
extract the salient features on the phone instead and send these 
features as the query to the server. Note that this approach also 
provides a certain degree of privacy. For a small database, com-
pressed database features could be stored on the mobile device, 
and matching could be performed directly on the device with-
out wireless communication. One can compress well-known 
feature descriptors, such as SIFT, trading off recognition perfor-
mance against size. Better performance, however, is achieved by 
the CHoG descriptor that was directly designed for rate-con-
strained recognition. CHoG needs about 60 b/feature, including 
its location. 

As an example throughout, we have used the Stanford 
Product Search system that implements many of the ideas dis-
cussed. We observe that the processing latency on the client and 
server is typically on the order of approximately 1 s. The trans-
mission delay depends on the network being used. For WLAN, 
the transmission delay is insignificant, and transmitting a JPEG 
image as a query is faster than extracting CHoG features on the 
phone. For 3G networks, the transmission delay is the bottle-
neck in an end-to-end system latency. By transmitting feature 
data, we can reduce end-to-end system latency to 2–3 s, com-
pared to sending the image that takes several times longer. 
Somewhat counter to intuition, extracting and transmitting fea-
ture data on the mobile client requires three times less energy 
than sending the image. 

In the next few years, we can expect a broad range of 
mobile visual search applications in domains ranging from art-
work, texts, books, CD covers, and buildings. State-of-the-art 
technology works best on highly textured rigid planar objects 
under controlled lighting conditions. The problem becomes 
much more challenging for 3-D objects (e.g., buildings), espe-
cially when the lighting conditions of the query image are 
drastically different from the reference database image. More 
generic object categories like plants, furniture, and apparel are 
challenging for recognition too. Text detection and optical 

character recognition are chal-
lenging for blurry low-quality 
camera phone images. However, 
this is becoming less of a prob-
lem as smartphones become 
pervasive. 

Numerous open problems remain. Accurate and near-
instantaneous Web-scale visual search with billions of images 
will likely remain as one of the grand challenges of multimedia 
technology for the years to come. Also, we would like to per-
form mobile visual search at video rates without ever pressing a 
button. Although faster processors and networks will get us 
closer to this goal, lower-complexity image-analysis algorithms 
are urgently needed. Hardware support on mobile devices 
should also help. It is envisioned that an ongoing standardiza-
tion activity in MPEG on compact descriptors for visual search 
will enable interoperability between databases and applications, 
enable hardware support on mobile devices, and reduce load on 
wireless networks carrying visual search related data. 
Ultimately, we may expect to see ubiquitous mobile augmented 
reality systems that continuously superimpose information and 
links on everything the camera of a mobile device sees, thus 
seamlessly linking the virtual world and the physical world. 
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