
IEEE SIGNAL PROCESSING MAGAZINE [61] JULY 2011

M
obile phones have evolved into powerful
image and video processing devices equipped
with high-resolution cameras, color displays,
and hardware-accelerated graphics. They are
also increasingly equipped with a global posi-

tioning system and connected to broadband wireless networks.
All this enables a new class of applications that use the camera
phone to initiate search queries about objects in visual proximi-
ty to the user (Figure 1). Such applications can be used, e.g., for
identifying products, comparison shopping, finding information
about movies, compact disks (CDs), real estate, print media, or

artworks. First deployments of such systems include Google
Goggles [1], Nokia Point and Find [2], Kooaba [3], Ricoh iCandy
[4]–[6], and Amazon Snaptell [7].

Mobile image-retrieval applications pose a unique set of
challenges. What part of the processing should be performed
on the mobile client, and what part is better carried out at the
server? On the one hand, transmitting a Joint Photographic
Experts Group (JPEG) image could take few seconds over a
slow wireless link. On the other hand, extraction of salient
image features is now possible on mobile devices in seconds.
There are several possible client–server architectures.

■ The mobile client transmits a query image to the server.
The image-retrieval algorithms run entirely on the server,
including an analysis of the query image.

 Digital Object Identifier 10.1109/MSP.2011.940881
 Date of publication: 15 June 2011

1053-5888/11/$26.00©2011IEEE

[Bernd Girod, Vijay Chandrasekhar, David M. Chen, Ngai-Man Cheung, Radek Grzeszczuk,

Yuriy Reznik, Gabriel Takacs, Sam S. Tsai, and Ramakrishna Vedantham]

[Linking the virtual and physical worlds]

© INGRAM PUBLISHING
& PHOTODISC

IEEE SIGNAL PROCESSING MAGAZINE [62] JULY 2011

 ■ The mobile client processes
the query image, extracts fea-
tures, and transmits feature
data. The image-retrieval algo-
rithms run on the server using
the feature data as query.

 ■ The mobile client downloads data from the server, and all
image matching is performed on the device.
One could also imagine a hybrid of the approaches men-

tioned above. When the database is small, it can be stored
on the phone, and image-retrieval algorithms can be run
locally [8]. When the database is large, it has to be placed
on a remote server and the retrieval algorithms are run
remotely.

In each case, the retrieval framework has to work within
stringent memory, computation, power, and bandwidth
 constraints of the mobile device. The size of the data transmit-
ted over the network needs to be as small as possible to reduce
network latency and improve user experience. The server laten-
cy has to be low as we scale to large databases. This article
reviews the recent advances in content-based image retrieval
with a focus on mobile applications. We first review large-scale
image retrieval, highlighting recent progress in mobile visual
search. As an example, we then present the Stanford Product
Search system, a low-latency interactive visual search system.
Several sidebars in this article invite the interested reader to dig
deeper into the underlying algorithms.

ROBUST MOBILE IMAGE RECOGNITION
Today, the most successful algorithms for content-based image
retrieval use an approach that is referred to as bag of features
(BoFs) or bag of words (BoWs). The BoW idea is borrowed from
text retrieval. To find a particular text document, such as a Web
page, it is sufficient to use a few well-chosen words. In the
 database, the document itself can be likewise represented by a

bag of salient words, regardless
of where these words appear in
the text. For images, robust
local features take the analogous
role of visual words. Like text

retrieval, BoF image retrieval does not consider where in the
image the features occur, at least in the initial stages of the
retrieval pipeline. However, the variability of features extracted
from different images of the same object makes the problem
much more challenging.

A typical pipeline for image retrieval is shown in Figure 2.
First, the local features are extracted from the query image. The
set of image features is used to assess the similarity between
query and database images. For mobile applications, individual
features must be robust against geometric and photometric dis-
tortions encountered when the user takes the query photo from
a different viewpoint and with different lighting compared to
the corresponding database image.

Next, the query features are quantized [9]–[12]. The parti-
tioning into quantization cells is precomputed for the database,
and each quantization cell is associated with a list of database
images in which the quantized feature vector appears some-
where. This inverted file circumvents a pairwise comparison of
each query feature vector with all the feature vectors in the data-
base and is the key to very fast retrieval. Based on the number of
features they have in common with the query image, a short list
of potentially similar images is selected from the database.

Finally, a geometric verification (GV) step is applied to the
most similar matches in the database. The GV finds a coherent
spatial pattern between features of the query image and the can-
didate database image to ensure that the match is plausible.
Example retrieval systems are presented in [9]–[14].

For mobile visual search, there are considerable challenges
to provide the users with an interactive experience. Current
deployed systems typically transmit an image from the client to
the server, which might require tens of seconds. As we scale to
large databases, the inverted file index becomes very large, with
memory swapping operations slowing down the feature-match-
ing stage. Further, the GV step is computationally expensive
and thus increases the response time. We discuss each block of
the retrieval pipeline in the following, focusing on how to meet
the challenges of mobile visual search.

[FIG1] A snapshot of an outdoor mobile visual search system
being used. The system augments the viewfinder with
information about the objects it recognizes in the image taken
with a camera phone.

Database

Query
Image

Feature
Extraction

Feature
Matching

Geometric
Verification

[FIG2] A Pipeline for image retrieval. Local features are extracted
from the query image. Feature matching finds a small set of
images in the database that have many features in common
with the query image. The GV step rejects all matches with
feature locations that cannot be plausibly explained by a change
in viewing position.

MOBILE IMAGE-RETRIEVAL
APPLICATIONS POSE A UNIQUE

SET OF CHALLENGES.

IEEE SIGNAL PROCESSING MAGAZINE [63] JULY 2011

FEATURE EXTRACTION

INTEREST-POINT DETECTION
Feature extraction typically starts by finding the salient
interest points in the image. For robust image matching, we
desire interest points to be repeatable under perspective
transformations (or, at least, scale changes, rotation, and
translation) and real-world lighting variations. An example of
feature extraction is illustrated in Figure 3. To achieve scale
invariance, interest points are typically computed at multiple
scales using an image pyramid [15]. To achieve rotation
invariance, the patch around each interest point is canoni-
cally oriented in the direction of the dominant gradient.
Illumination changes are compensated by normalizing the
mean and standard deviation of the pixels of the gray values
within each patch [16].

Numerous interest-point detectors have been proposed in
the literature. Harris Corners [17], scale-invariant feature
 transform (SIFT) difference-of-Gaussian (DoG) [15] key
points, maximally stable extremal regions (MSERs) [18],
Hessian affine [16], features from accelerated segment test
(FAST) [19], and Hessian blobs [20] are some examples. The
different interest-point detectors provide different tradeoffs in
repeatability and complexity. SIFT DoG and other affine inter-
est-point detectors are slow to compute but are highly repeat-
able. The speeded up robust feature (SURF) interest-point
detector provides significant speed up over DoG interest-point
detectors by using box filters and integral images for fast com-
putation. However, the box filter approximation causes signifi-
cant anisotropy, i.e., the matching performance varies with
the relative orientation of query and database images [21].
The FAST corner detector is an extremely fast interest-point
detector that offers very low repeatability. In [22], Mikolajczyk
et al. compare the different interest-point detectors in a com-
mon framework.

The Stanford Product Search system can perform feature
extraction and compression on the client to reduce system

latency. Current generation smartphones have limited compute
power, typically only a tenth of what a desktop personal com-
puter provides. We require interest points that are fast to com-
pute and highly repeatable. We choose the Hessian-blob
detector sped up with integral images [20], which provide a
good tradeoff of repeatability and complexity. For video graph-
ics array (VGA) images, Hessian-blob interest-point detection
can be carried out in approximately 1 s on current-generation
smartphones [14].

FEATURE DESCRIPTOR COMPUTATION
After interest-point detection, we compute a visual word
descriptor on a normalized patch. We would like descriptors to
be robust to small distortions in scale, orientation, and lighting
conditions. Also, we require descriptors to be discriminative,
i.e., characteristic of an image or a small set of images.
Descriptors that occur in almost every image (the equivalent of
the word and in text documents) would not be useful for
retrieval. Since the publication of Lowe’s article in 1999 [23],
the highly discriminative SIFT descriptor remains the most
popular descriptor in computer vision. Other examples of fea-
ture descriptors are gradient location and orientation histo-
gram (GLOH) by Mikolajczyk and Schmid [22], SURF by Bay et
al. [24], and our own compressed histogram of gradients
(CHoGs) [25], [26]. Winder and Brown [27], [28] and
Mikolajczyk et al. [22] evaluate the performance of the differ-
ent descriptors.

As a 128-dimensional descriptor, the SIFT descriptor is
conventionally stored as 1,024 b (8 b/dimension). However, the
size of SIFT descriptor data from an image is typically larger
than the size of the JPEG-compressed image itself. Several
compression schemes have been proposed to reduce the bit
rate of SIFT descriptors. In our recent work [29], we survey
the different SIFT compression schemes. They can be broadly
categorized into schemes based on hashing [30]–[32], trans-
form coding [29], [33] and vector quantization (VQ) [10], [11],
[34]. We note that hashing schemes such as locality-sensitive

Query Image Normalized
Patch

Spatial
Binning

Gradient Distributions
for Each Bin

CHoG

dx

dx

dY

dY

Histogram
Compression

011101

0100101

01101

101101

0100011

111001

0010011

01100

1010100

(a) (b)

[FIG3] Illustration of feature extraction. We first compute interest points (e.g., corners and blobs) at different scales. The patches at
different scales are oriented along the dominant gradient. Feature extraction is followed by computation of feature descriptors that
capture the salient characteristics of the image around the interest point. Here, we illustrate how the CHoG descriptor is computed. The
scaled and oriented canonical patches are divided into localized spatial bins, which gives robustness to interest-point localization error.
The distribution of gradients in each spatial bin is compressed to obtain a very compact description of the patch. (a) Interest-point
detection. (b) Computation of feature descriptors.

IEEE SIGNAL PROCESSING MAGAZINE [64] JULY 2011

CHOG: A LOW BIT-RATE DESCRIPTOR
CHoG builds upon the principles of HoG descriptors with the
goal of being highly discriminative at low bit rates. Figure 3
illustrates how the CHoG descriptors are computed.
• The patch is divided into spatial bins, which pro-

vides robustness to interest-point localization error.
We divide the patch around each interest point
into soft log-polar spatial bins using DAISY
 configurations proposed in [28]. The log-polar con-

figuration has been shown to be more effective
than the square-grid configuration used in SIFT [22],
[28], [46].

• The joint 1dx, dy 2 gradient histogram in each spatial
bin is directly captured into the descriptor, as illustrat-
ed in Figure S1. CHoG histogram binning exploits the
skew in gradient statistics that are observed for
patches extracted around interest points.

x-Gradient

(b)

y-
G

ra
di

en
t

−0.5 −0.25 0 0.25 0.5
−0.5

−0.25

0

0.25

0.5

−0.2 −0.1 0 0.1 0.2
−0.2

−0.1

0

0.1

0.2

(c)

−0.2

−0.1

0

0.1

0.2

−0.2 −0.1 0 0.1 0.2

(d)

−0.2 −0.1 0 0.1 0.2

(e)

−0.2

−0.1

0

0.1

0.2

−0.2 −0.1 0

(f)

0.1 0.2
−0.2

−0.1

0

0.1

0.2

(a)

0.12
0.1

0.08
0.06
0.04
0.02

0
0.5

0.25
0

–0.25
y-Gradient

x-Gradient
–0.5 –0.5

P
ro

ba
bi

lit
y

–0.25

0.25
0.5

0
.25

0
–0.25 –0.25

0.25
0

0

[FIG S1] The joint 1dx, dy 2 gradient distribution (a) over a large number of cells and (b) its contour plot. The greater variance in y
axis results from aligning the patches along the most dominant gradient after interest-point detection. (The quantization bin
constellations (c) VQ-3, (d) VQ-5, (e) VQ-7, and (f) VQ-9 and their associated Voronoi cells are shown.

hashing (LSH), similarity-sensitive coding (SSC), or spectral
hashing (SH) do not perform well at low bit rates.
Conventional transform-coding schemes based on principal
component analysis (PCA) do not work well because of the
highly non-Gaussian statistics of the SIFT descriptor. The VQ
schemes based on the product quantizer [34] or a tree-struc-
tured vector quantizer [10] are complex and require storage of
large codebooks on the mobile device.

In [33], we also explore transform coding of the
64-dimensional SURF descriptor, which also performs poorly
at low bit rates. Other popular approaches used to reduce the

size of descriptors typically employ dimensionality reduction
via PCA or linear discriminant analysis (LDA) [35], [36]. Ke
and Sukthankar [35] investigate dimensionality reduction of
patches directly via PCA. Hua et al. [36] propose a scheme
that uses LDA. Winder and Brown [28] combine the use of
PCA with additional optimization of gradient and spatial bin-
ning parameters as part of the training step. The disadvan-
tages of PCA and LDA approaches are its high computational
complexity and the risk of overtraining for descriptors from
a particular data set. Further, with PCA and LDA, descriptors
cannot be compared in the compressed domain if entropy

IEEE SIGNAL PROCESSING MAGAZINE [65] JULY 2011

coding is employed. The 60-b MPEG-7 trace–transform
descriptor [37] and binary robust independent elementary
features (BRIEFs) [38] are other examples of low bit-rate
descriptors proposed in recent literature. Johnson proposes a
generalized set of techniques to compress local features in
his recent work [39]. Philbin et al. [40] use learning tech-
niques to generate a 32-B descriptor that performs on par
with SIFT.

Through our experiments, we came to realize that simply
compressing an off-the-shelf descriptor does not lead to the
best-rate-constrained image-retrieval performance. One can

do better by designing a descriptor with compression in mind.
Of course, such a descriptor still has to be robust and highly
discriminative. Ideally, it would permit descriptor compari-
sons in the compressed domain for speedy feature matching.
To meet all these requirements simultaneously, we designed
the CHoG descriptor [25], [26]. Descriptors based on the dis-
tribution of gradients within a patch of pixels have been
shown to be highly discriminative [22], [27]. Lowe [15], Bay et
al. [24], Dalal and Triggs [41], Freeman and Roth [42], and
Winder et al. [28] have proposed histogram of gradient (HoG)-
based descriptors.

• CHoG retains the information in each spatial bin as a dis-
tribution. This allows the use of more effective distance
measures such as Kullback Leibler (KL) divergence, and
more importantly, allows us to apply quantization and
compression schemes that work well for distributions, to
produce compact descriptors.
Typically, nine to 13 spatial bins and three to nine gra-

dient bins are chosen, resulting in 27- to 117-dimensional
descriptors. For compressing the descriptor, we quantize
the gradient histogram in each spatial bin individually. In
[25] and [26], we have explored several novel quantiza-
tion schemes that work well for compressing distributions:
quantization by Huffman coding, type coding, and opti-
mal Lloyd-Max VQ. Here, we briefly discuss one of the
schemes: type coding, which is linear in complexity to the
number of histogram bins and performs close to optimal
Lloyd-Max VQ.

Let m represent the number of histogram bins. m varies
from three to nine for the CHoG descriptor. Let P5 3p1,
p2, c, pm 4 [R1

m be the original distribution as described by
the gradient histogram, and Q5 3q1, q2, c, qm 4 [R1

m be the
quantized probability distribution. First, we construct a lattice
of distributions (or types) Qn5Q 1k1, c, km 2 with
 probabilities

 qi5
ki

n
, ki, n [Z1, a

i
ki5 n. (1)

We show several examples of such sets in m5 3 dimensions
in Figure S2.

The parameter n controls the fidelity of quantization,
and higher the value of n parameter, higher the fidelity.
Second, after quantizing the distribution P, we compute an
index for the type. The total number of types K 1m, n 2 is the
number of partitions of n into m terms k11c1 km5 n

 K 1m, n 2 5 an1m2 1
m2 1

b. (2)

The algorithm that maps a type to its index fn: 5k1, c,
km6 S 30, K 1m, n 2 2 1 4 is described in [26].

Finally, we encode the index in each spatial cell with
fixed-length or entropy codes. Fixed-length encoding pro-
vides the benefit of compressed domain matching at the
cost of a small performance hit. The type quantization and
coding scheme described here performs close to optimal
Lloyd-Max VQ and does not require storage of codebooks
on the mobile client. The CHoG descriptor with type coding
at 60 b matches the performance of the 128-dimensional
1,024-b SIFT descriptor [26].

[FIG S2] Type lattices and their Voronoi partitions in three dimensions 1m 5 3, n 5 1, 2, 3 2 .

1.0

0.75

0.5

0.25

0.0
0.0 0.25 0.5 0.75 1.0

1.0

0.5

0.0

q1

q2

q 3

1.0

0.75

0.5

0.25

0.0
0.0 0.25 0.5 0.75 1.0

1.0

0.5

0.0

q1

q2

q 3

1.0

0.75

0.5

0.25

0.0
0.0 0.25 0.5 0.75 1.0

1.0

0.5

0.0

q1

q2

q 3

n = 1 n = 2 n = 3

IEEE SIGNAL PROCESSING MAGAZINE [66] JULY 2011

The CHoG descriptor is
designed to work well at low
bit rates (see “CHoG: A Low
Bit-Rate Descriptor”). CHoG
achieves a performance of
1,024-b SIFT at approximately
60 b/descriptor. CHoG is lower dimensional than SIFT
because of the more effective gradient and spatial binning
schemes. The compact bit representation is a result of lossy
quantization and compression schemes that are employed
to the descriptor. The CHoG descriptor is a concatenation
of distributions (a set of values that sum to one). The prob-
lem of lossy quantization of distributions had received little
attention in the compression literature prior to the work on
CHoG. In our work [25], [26], [43], [44], we explore the
problem of quantization and compression of distributions
in detail. Further, we propose schemes that map distribu-
tions directly to fixed-length codes, which enables match-
ing in the compressed domain. The CHoG descriptor is
compared with several other low bit-rate descriptors in the
literature in [45].

At 60 b/descriptor, CHoG descriptor data are an order of
magnitude smaller than SIFT- or JPEG-compressed images and
can be transmitted much faster over slow wireless links. A small
descriptor also helps if the database is stored in the mobile
device. The smaller the descriptor, the more features can be
stored in limited memory.

As illustrated in Figure 3, each interest point has a loca-
tion, scale, and orientation associated with it. Interest-point
locations are needed in the GV step to validate potential candi-
date matches. The location of each interest point is typically
stored as two numbers: x and y coordinates in the image at
subpixel accuracy [15]. In a floating point representation, each
feature location would require 64 b and 32 b each for x and y.
This is comparable in size to the CHoG descriptor itself. We
have developed a novel histogram coding scheme to encode
the x, y coordinates of feature descriptors [47] (see “Location
Histogram Coding”). With location histogram coding (LHC),
we can reduce location data by an order of magnitude com-
pared with their floating point representation, without loss in
matching accuracy.

A few hundred descriptors per query image are sufficient for
achieving high matching accuracy for large databases [14], [26].
Table 1 summarizes data reduction using CHoG and LHC for
500 descriptors per image.

FEATURE INDEXING
AND MATCHING
For a large database of images,
comparing the query image
against every database image
using pairwise feature matching

is infeasible. A database with millions of images might con-
tain billions of features. A linear scan through the database
would be time consuming for interactive mobile visual search
applications. Instead, we must use a data structure that can
quickly return a short list of the database candidates most
likely to match the query image. The short list may contain
false positives as long as the correct match is included. Slower
pairwise comparisons can be subsequently performed on just
the short list of candidates rather than the entire database.

Many data structures have been proposed for efficiently
indexing all the local features in a large image database. Lowe
proposes approximate nearest neighbor (ANN) search of SIFT
descriptors with a best-bin-first strategy [15]. One of the most
popular methods is Sivic and Zisserman’s BoF approach [9]. The
BoF codebook is trained by k-means clustering of many training
descriptors. During a query, scoring the database images can be
made fast by using an inverted file index associated with the
BoF codebook. To generate a much larger codebook, Nister and
Stewenius use hierarchical k-means clustering to create a
vocabulary tree (VT) [10]. The VT is explained in greater detail
in “VT and Inverted Index.” Alternatively, Philbin et al. use ran-
domized k-d trees to partition the feature descriptor space [12].
Subsequent improvements in tree-based quantization and ANN
search include greedy N-best paths [49], query expansion [50],
efficient updates over time [51], soft binning [12], and
Hamming embedding [11].

The problem with hard quantization for k means is that
many matching features that should get quantized to the same
node end up in different cells due to quantization error. Soft
binning schemes proposed in the literature alleviate this prob-
lem and improve the matching accuracy. The advantage of the
hierarchical scoring approach in [10] is that the soft assign-
ment is given by the structure of the tree and no additional
information needs to be stored for each feature. However, the
authors in [12] note that the quantization artifacts are not
completely removed with hierarchical quantization. To
improve performance, Philbin et al. [12] propose a soft binning
scheme, where each feature is assigned to n nearest visual
words. However, this increases the size of the inverted index by
n-fold. The greedy N-best paths scheme [49] also reduces the
quantization error but increases the query time, as N best
paths need to be explored in the quantization step. Jegou et al.
[11] have proposed to combine k-means quantization and
binary vector signatures. First, the feature space is divided into
a relatively small number of Voronoi cells (20,000) using k
means. Each cell is then divided into n independent hyper-
planes resulting in 2n subcells. Jegou et al. suggest that
Hamming embedding provides better quantization. However,
this is achieved at the expense of higher memory requirements

[TABLE 1] DATA REQUIRED TO REPRESENT
AN IMAGE FOR MOBILE VISUAL SEARCH.

SCHEME DATA (kB)

JPEG-COMPRESSED IMAGE 30–40
SIFT + UNCOMPRESSED LOCATION DATA 66.4
CHOG + UNCOMPRESSED LOCATION DATA 7.6
CHOG + COMPRESSED LOCATION DATA 4.0

CHoG IS LOWER DIMENSIONAL
THAN SIFT BECAUSE OF THE MORE
EFFECTIVE GRADIENT AND SPATIAL

BINNING SCHEMES.

IEEE SIGNAL PROCESSING MAGAZINE [67] JULY 2011

and higher query times, as longer inverted files need to be tra-
versed due to the smaller vocabulary size.

As database size increases, the amount of memory used to
index the database features can become very large. Thus, devel-
oping a memory-efficient indexing structure is a problem of
increasing interest. Chum et al. use a set of compact min-hash-
es to perform near-duplicate image retrieval [52], [53]. Zhang et
al. decompose each image’s set of features into coarse and
refinement signatures [54]. The refinement signature is
 subsequently indexed by an LSH. Schemes that take advantage
of the structure of the database have been proposed recently in
[55]–[57]. These schemes are typically applied to databases
where there is a lot of redundancy, e.g., each object is represent-

ed by images taken from multiple view points. The size of the
inverted index is reduced by using geometry to find matching
features across images, and only retaining useful features and
discarding irrelevant clutter features.

To support the popular VT-scoring framework, inverted
index compression methods for both hard-binned and soft-
binned VTs have been developed by us [58], as explained in
“Inverted Index Compression.” The memory for BoF image
 signatures can be alternatively reduced using the mini-BoF
approach [59]. Very recently, visual word residuals on a small
BoF codebook have shown promising retrieval results with low
memory usage [60], [61]. The residuals are indexed either with
PCA and product quantizers [60] or with LSH [61].

LOCATION HISTOGRAM CODING
LHC is used to compress feature location data efficiently.
We note that the interest points in the images are spatially
clustered, as shown in Figure S3.

To encode location data, we first generate a two-
dimensional (2-D) histogram from the locations of the
descriptors (Figure S4). We divide the image into spatial
bins and count the number of features within each spatial
bin. We compress the binary map, indicating which spatial
bins contains features, and a sequence of feature counts,
representing the number of features in occupied bins. We
encode the binary map using a trained context-based
arithmetic coder, with the neighboring bins being used as
the context for each spatial bin.

LHC provides two key benefits. First, encoding the
locations of a set of N features as the histogram reduces
the bit rate by log(N!) compared to encoding each feature
location in sequence [47]. Here, we exploit the fact that
the features can be sent in any order. Consider the sample
space that represents N features. There are N! number of
codes that represent the same feature set because the
order does not matter. Thus, if we fix the ordering for the

feature set, i.e., using the LHC scheme described earlier,
we can achieve a bit savings of log(N!). For example, for a
feature set of 750 features, we achieve a rate savings of
log(750!)/750 z 8 b/feature.

Second, with LHC, we exploit the spatial correlation
between the locations of different descriptors, as illustrat-
ed in Figure S3. Different interest-point detectors result in
different coding gains. In our experiments, Hessian Laplace
has the highest gain followed by SIFT and SURF interest-
point detectors. Even if the feature points are uniformly
scattered in the image, LHC is still able to exploit the
ordering gain, which results in log(N!) saving in bits.

In our experiments, we found that quantizing the
(x, y) location to four-pixel blocks is sufficient for GV. If
we use a simple fixed-length coding scheme, then the
rate will be log(640/4) 1 log(640/4) z 14 b/feature for a
VGA size image. Using LHC, we can transmit the same
location data with z 5 b/descriptor; z 12.5 times reduc-
tion in data compared to a 64-b floating point represen-
tation and z 2.8 times rate reduction compared to
fixed-length coding [48].

[FIG S3] Interest-point locations in images tend to cluster
spatially.

[FIG S4] We represent the location of the descriptors using
a location histogram. The image is first divided into evenly
spaced blocks. We enumerate the features within each spatial
block by generating a location histogram.

1

1
1

1

1 1 1

1
3

2

IEEE SIGNAL PROCESSING MAGAZINE [68] JULY 2011

GEOMETRIC VERIFICATION
The GV typically follows the feature matching step. In
this stage, we use location information of query and data-
base features to confirm that the feature matches are
consistent with a change in viewpoint between the two
images. We perform pairwise matching of feature descrip-
tors and evaluate geometric consistency of correspon-
dences as shown in Figure 4. The geometric transform
between query and database image is estimated using
robust regression techniques such as RANSAC [66] or the

Hough transform [15]. The transformation can be repre-
sented by the fundamental matrix that incorporates
three-dimensional (3-D) geometry, or simpler homogra-
phy or affine models. The GV tends to be computationally
expensive, which limits the list of candidate images to a
small number.

A number of groups have investigated ways to speed up
the GV process. Semilocal geometric constraints have
been proposed in [9], [13], [67], and [68] to either filter
out or propose feature matches. The authors Jegou et al.

VT AND INVERTED INDEX
A VT with an inverted index can be used to quickly com-
pare images in a large database against a query image. If
the VT has L levels excluding the root node and each
interior node has C children, then a fully balanced VT
contains K5 C

L leaf nodes. Figure S5 shows a VT with
L5 2, C5 3, and K5 9. The VT for a particular database is
constructed by performing hierarchical k-means cluster-
ing on a set of training feature descriptors representative
of the database, as illustrated in Figure S5(a). Initially, C
large clusters are generated from all the training descrip-
tors by ordinary k means with an appropriate distance
function like L2 norm or symmetric KL divergence. Then,
for each large cluster, k-means clustering is applied to the
training descriptors assigned to that cluster to generate C
smaller clusters. This recursive division of the descriptor
space is repeated until there are enough bins to ensure
good classification performance. Typically, L5 6 and
C5 10 are selected [10], in which case the VT has K5 106
leaf nodes.

The inverted index associated with the VT maintains
two lists per leaf node, as shown in Figure S5(b). For node
k, there is a sorted array of image IDs 5ik1, ik2, c, ikNk

6
 in dicating which Nk database images have visited that
node. Similarly, there is a corresponding array of counts
5ck1, ck2, c, ckNk

6 indicating the frequency of visits. During
a query, a database of N total images can be quickly scored
by traversing only the nodes visited by the query descrip-
tors. Let s 1 i 2 be the similarity score for the ith database
image. Initially, prior to visiting any node, s 1 i 2 is set to
zero. Suppose node k is visited by the query descriptors a
total of qk times. Then, all the images in the inverted list
5ik1, c, ikNk

6 for node k will have their scores incremented
according to

 s 1 ikj 2 :5 s 1 ikj 2 1wk
2 ckj qk

Sikj
Sq

, j5 1, c, Nk, (3)

where wk is an inverse document frequency (IDF) weight
used to penalize often-visited nodes, Sikj

 is a normalization
factor for database image i

kj
, and Sq is a normalization fac-

tor for the query image.

wk5 log 1N/Nk 2 , (4)

 Sikj
5 a

K

n51
wn 1count for DB image ikj at node n 2 , (5)

aq5 a
K

n51
wn 1count for query image at node n 2 . (6)

Scores for images at the other nodes visited by the query
image are updated similarly. The database images attain-
ing the highest scores s 1 i 2 are judged to be the best
matching candidates and kept in a short list for further
verification.

Soft binning [12] can be used to mitigate the effect of
quantization errors for a large VT. As seen in Figure S5(a),
some descriptors lie very close to the boundary between
two bins. When soft binning is employed, the visit counts
are then no longer integers but rather fractional values.
For each feature descriptor, the m nearest leaf nodes in
the VT are assigned fractional counts

 ci5 1/C # exp 120.5di
2/s2 2 , i5 1, c, m, (7)

 C5 a
m

i51
exp 120.5di

2/s2 2 , (8)

where di is the distance between the i th closest leaf node
and the feature descriptor, and S is appropriately chosen
to maximize classification accuracy.

i21 i22 i23
c21 c22 c23

i1N2

c1N2

i11 i12 i13 i1N1...
c11 c12 c13 c1N1...

...

...1 2 3 4 5 6 7 8 9

Inverted IndexVT

1 2

3

4 5

6

7 8

9

Training Descriptor
Root Node
First-Level
Intermediate Node
Second-Level
Leaf Node

(a)

(b)

[FIG S5] (a) Construction of a VT by hierarchical k-means
clustering of training feature descriptors. (b) VT and the
associated inverted index.

IEEE SIGNAL PROCESSING MAGAZINE [69] JULY 2011

[11] use weak geometric consistency checks to rerank
images based on the orientation and scale information of
all features. The authors in [53] and [69] propose incor-
porating geometric information into the VT matching or
hashing step. In [70] and [71], the authors investigate
how to speed up RANSAC estimation itself. Philbin et al.
[72] use single pairs of matching features to propose
hypotheses of the geometric transformation model and
verify only possible sets of hypotheses. Weak geometric
consistency checks are typically used to rerank a larger
candidate list of images, before a full GV is performed on
a shorter candidate list.

To speed up GV, one can add a geometric reranking step
before the RANSAC GV step, as illustrated in Figure 5. In
[73], we propose a reranking step that
incorporates geometric information
directly into the fast index lookup stage
and use it to reorder the list of top
matching images (see “Fast Geometric
Reranking”). The main advantage of the
scheme is that it only requires x, y fea-
ture location data and does not use scale

INVERTED INDEX COMPRESSION
For a database containing 1 million images and a VT that uses
soft binning, each image ID can be stored in a 32-b unsigned
integer, and each fractional count can be stored in a 32-b
float in the inverted index. The memory usage of the entire
inverted index is gk

k51 Nk
64 bits, where Nk is the length of

the inverted list at the kth leaf node. For a database of 1 mil-
lion product images, this amount of memory reaches 10 GB, a
huge amount for even a modern server. Such a large memory
footprint limits the ability to run other concurrent processes
on the same server, such as recognition systems for other
databases. When the inverted index’s memory usage exceeds
the server’s available random access memory (RAM), swap-
ping between main and virtual memory occurs, which signifi-
cantly slows down all processes.

A compressed inverted index [58] can significantly reduce
memory usage without affecting recognition accuracy. First,
because each list of IDs 5ik1, ik2, c, ikNk

6 is sorted, it is more
efficient to store consecutive ID differences 5dk15 ik1,
dk25 ik22 ik1, c, dkNk

5 ikNk
2 ik1Nk2126 in place of the IDs. This

practice is also commonly used in text retrieval [62]. Second,
the fractional visit counts can be quantized to a few repre-
sentative values using Lloyd-Max quantization. Third, the dis-
tributions of the ID differences and visit counts are far from
uniform, so variable-length coding can be much more rate
efficient than fixed-length coding. Using the distributions of
the ID differences and visit counts, each inverted list can be
encoded using an arithmetic code (AC) [63]. Since keeping
the decoding delay low is very important for interactive
mobile visual search applications, a scheme that allows ultra-
fast decoding is often preferred over AC. The carryover code

[64] and recursive bottom-up complete (RBUC) code [65] have
been shown to be at least ten times faster in decoding than
AC, while achieving comparable compression gains as AC. The
carryover and RBUC codes attain these speedups by enforcing
word-aligned memory accesses.

Figure S6(a) compares the memory usage of the invert-
ed index with and without compression using the RBUC
code. Index compression reduces memory usage from near-
ly 10 GB to 2 GB. This five times reduction leads to a sub-
stantial speedup in server-side processing, as shown in
Figure S6(b). Without compression, the large inverted
index causes swapping between main and virtual memory
and slows down the retrieval engine. After compression,
memory swapping is avoided and memory congestion
delays no longer contribute to the query latency.

Unc
od

ed

Cod
ed

Unc
od

ed

Cod
ed

0

5

10

M
em

or
y

U
sa

ge
 (

G
B

)

(a)

0

2

4

6

Q
ue

ry
 L

at
en

cy
 (

s)

(b)

[FIG S6] (a) Memory usage for inverted index with and
without compression. A five times savings in memory is
achieved with compression. (b) Server-side query latency
(per image) with and without compression. The RBUC code
is used to encode the inverted index.

Query
Data

VT
Geometric
Reranking GV

Identify
Information

[FIG5] An image retrieval pipeline can be greatly sped up by incorporating a geometric
reranking stage.

[FIG4] In the GV step, we match feature descriptors pairwise and
find feature correspondences that are consistent with a geometric
model. True feature matches are shown in red. False feature
matches are shown in green.

IEEE SIGNAL PROCESSING MAGAZINE [70] JULY 2011

or orientation information as in [11]. As scale and orientation
data are not used, they need not be transmitted by the client,
which reduces the amount of data transferred. We typically
run fast geometric reranking on a large set of candidate data-
base images and reduce the list of images that we run
RANSAC on.

Before discussing system performance results, we provide a
list of important references for each module in the matching
pipeline in Table 2.

SYSTEM PERFORMANCE
What performance can we expect for a mobile visual search
system that incorporates all the ideas discussed so far? To
answer this question, we have a closer look at the experimen-
tal Stanford Product Search System (Figure 6). For evalua-
tion, we use a database of 1 million CD, digital versatile disk
(DVD), and book cover images, and a set of 1,000 query images
(500 3 500 pixel resolution) [75] exhibiting challenging pho-
tometric and geometric distortions, as shown in Figure 7. For

[TABLE 2] SUMMARY OF REFERENCES FOR MODULES IN A MATCHING PIPELINE.

MODULE LIST OF REFERENCES

FEATURE EXTRACTION HARRIS AND STEPHENS [17], LOWE [15], [23], MATAS ET AL. [18], MIKOLAJCZYK ET AL. [16], [22],
DALAL AND TRIGGS [41], ROSTEN AND DRUMMOND [19], BAY ET AL. [20], WINDER ET AL. [27], [28],
CHANDRASEKHAR ET AL. [25], [26], PHILBIN ET AL. [40]

FEATURE INDEXING AND MATCHING SCHMID AND MOHR [13], LOWE [15], [23], SIVIC AND ZISSERMAN [9], NISTÉR AND STEWÉNIUS [10],
CHUM ET AL. [50], [52], [53], YEH ET AL. [51], PHILBIN ET AL. [12], JEGOU ET AL. [11], [59], [60], ZHANG ET AL. [54]
CHEN ET AL. [58], PERRONNIN [61], MIKULIK ET AL. [55], TURCOT AND LOWE [56], LI ET AL. [57]

GV FISCHLER AND BOLLES [66], SCHAFFALITZKY AND ZISSERMAN [74], LOWE [15], [23], CHUM ET AL. [53], [70], [71]
FERRARI ET AL. [68], JEGOU ET AL. [11], WU ET AL. [69], TSAI ET AL. [73]

FAST GEOMETRIC RERANKING
We have proposed a fast geometric reranking algorithm in
[73] that uses x, y locations of features to rerank a short list
of candidate images. First, we generate a set of potential
feature matches between each query and database image
based on VT-quantization results. After generating a set of
feature correspondences, we calculate a geometric score
between them. The process used to compute the geometric
similarity score is illustrated in Figure S7. We find the dis-
tance between the two features in the query image and
the distance between the corresponding matching features
in the database image. The ratio of the distance corre-
sponds to the scale difference between the two images.
We repeat the ratio calculation for features in the query
image that have matching database features. If there exists
a consistent set of ratios (as indicated by a peak in the his-
togram of distance ratios), it is more likely that the query
image and the database image match.

The geometric reranking is fast because we use the
VT-quantization results directly to find potential feature
matches and use a really simple similarity scoring scheme.

The time required to calculate a geometric similarity score
is one to two orders of magnitude less than using RANSAC.
Typically, we perform fast geometric reranking on the top
500 images and RANSAC on the top 50 ranked images.

(a) (b) (c) (d)

log (÷)

[FIG S7] The location geometric score is computed as
follows: (a) features of two images are matched based on
VT quantization, (b) distances between pairs of features
within an image are calculated, (c) log-distance ratios of the
corresponding pairs (denoted by color) are calculated, and
(d) histogram of log-distance ratios is computed. The
maximum value of the histogram is the geometric similarity
score. A peak in the histogram indicates a similarity
transform between the query and database image.

[FIG6] Stanford Product Search system. Because of the large database, the image-recognition server is placed at a remote location. In
most systems [1], [3], [7], the query image is sent to the server and feature extraction is performed. In our system, we show that by
performing feature extraction on the phone we can significantly reduce the transmission delay and provide an interactive experience.

Client

Image Feature
Extraction

Feature
Compression

Display

Query Data

Network

Identification Data

VT Matching

GV

Server

IEEE SIGNAL PROCESSING MAGAZINE [71] JULY 2011

the client, we use a Nokia 5800 mobile phone with a 300-MHz
central processing unit (CPU). For the recognition server, we
use a Linux server with a Xeon E5410 2.33-GHz CPU and
32 GB of RAM. We report results for both 3G and wireless local
area network (WLAN) networks. For 3G, experiments are con-
ducted in an AT&T 3G wireless network, averaged over several
days, with a total of more than 5,000 transmissions at indoor
locations where such an image-based retrieval system would
be typically used.

We evaluate two different modes of operation. In send fea-
tures mode, we process the query image on the phone and
transmit compressed query features to the server. In send image
mode, we transmit the query image to the server, and all opera-
tions are performed on the server.

We discuss results of the three key aspects that are critical
for mobile visual search applications: retrieval accuracy, system
latency, and power. A recurring theme throughout this section
will be the benefits of performing feature extraction on the
mobile device compared to performing all processing on a
remote server.

RETRIEVAL ACCURACY
It is relatively easy to achieve high precision (low false posi-
tives) for mobile visual search applications. By requiring a
minimum number of feature matches after RANSAC GV, we
can avoid false positives entirely. To avoid false-positive
 matches, we set a minimum number of matching features
after RANSAC GV to 12, which is high enough to avoid false
positives. We define recall as the percentage of query images
correctly retrieved. Our goal then is to maximize recall at a
negligibly low false-positive rate.

Figure 8 compares the recall for the three schemes: send
features (CHoG), send features (SIFT), and send image
(JPEG) at precision one. For the JPEG scheme, the bit rate
is varied by changing the quality of compression. For the
SIFT scheme, we extract the SIFT descriptors on the mobile
device and transmit each descriptor uncompressed as
1,024 b. For the CHoG scheme, we need to transmit about
60 b/descriptor across the network. For SIFT and CHoG
schemes, we sweep the recall-bit rate curve by varying the
number of descriptors transmitted. For a given budget of

(a)

(b)

[FIG7] Example image pairs from the data set. (a) A clean database picture is matched against (b) a real-world picture with various
distortions.

100 101 102
80

82

84

86

88

90

92

94

96

98

100

Bit Rate (kB)

R
ec

al
l (

%
)

Send Feature (CHoG)
Send Image (JPEG)
Send Feature (SIFT)

[FIG8] Bit-rate comparisons of different schemes. CHoG
descriptor data are an order of magnitude smaller compared to
the JPEG images or uncompressed SIFT descriptors.

IEEE SIGNAL PROCESSING MAGAZINE [72] JULY 2011

features, the descriptors with
the highest Hessian response
are transmitted. The descrip-
tors are transmitted in the
order imposed by the LHC
scheme discussed in “Location
Histogram Coding.”

First, we observe that a recall of 96% is achieved at the
highest bit rate for challenging query images even with a
million images in the database. Second, we observe that the
performance of the JPEG scheme rapidly deteriorates at low
bit rates. The performance suffers at low bit rates as the
interest-point detection fails due to JPEG-compression arti-
facts. Third, we note that transmitting uncompressed SIFT
data is almost always more expensive than transmitting
JPEG-compressed images. Finally, we observe that the
amount of data for CHoG descriptors is an order of magni-
tude smaller than JPEG images or SIFT descriptors at the
same retrieval accuracy.

SYSTEM LATENCY
The system latency can be broken down into three components:
processing delay on client, transmission delay, and processing
delay on server.

CLIENT- AND SERVER-PROCESSING DELAY
We show the time taken for the different operations on the
client and server in Table 3. The send features mode requires
approximately 1 s for feature extraction on the client.
However, this increase in client-processing time is more than
compensated by the decrease in transmission latency, com-
pared to send image, as illustrated in Figures 9 and 10. On the
server, using VT matching with a compressed inverted index,
we can search through a million image database in 100 ms.
We perform GV on a short list of 50 candidates after fast geo-
metric reranking of the top 500 candidate images. We can
achieve ,1 s server processing latency while maintaining
high recall.

TRANSMISSION DELAY
The transmission delay depends on the type of network used.
In Figure 10, we observe that the data transmission time is
insignificant for a WLAN network because of the high

 bandwidth available. However,
the transmission time turns out
to be a bottleneck for 3G net-
works. In Figure 9, we present
the experimental results for
sending data over a 3G wireless
network. We vary query data

sizes from that of typical compressed query features (3–4 kB)
to typical JPEG query images (50 kB) to learn how query size
affects transmission time. The communication time-out was
set to 60 s. We have conducted the experiment continuously
for several days. We tested at three different locations, typical
locations where a user might use the visual search application.

The median and average transmission latency of our exper-
iments are shown in Figure 9. Sending the compressed query
features typically takes 3–4 s. The time required to send the
compressed query image is several times longer and varies
significantly at different locations. However, the transmission
delay does not include the cases when the communication

18

16

14

12

10

8

6

4

2

14

12

10

8

6

4

2

0

0 10 20 30 40 50
Query Data Size (kB)

(a)

0 10 20 30 40 50
Query Data Size (kB)

(b)

C
om

m
un

ic
at

io
n

T
im

e-
O

ut
 (

%
)

Tr
an

sm
is

si
on

 L
at

en
cy

 (
s)

Indoor (I) (Average) Indoor (I) (Median)
Indoor (II) (Average) Indoor (II) (Median)
Outdoor (Average) Outdoor (Median)

Indoor (I)
Indoor (II)
Outdoor

[FIG9] Measured transmission latency (a) and time-out
percentage (b) for transmitting queries of different size over a
3G network. Indoor (I) is tested indoors with poor connectivity.
Indoor (II) is tested indoors with good reception. Outdoor is
tested outside of buildings.

[TABLE 3] PROCESSING TIMES.

CLIENT-SIDE OPERATIONS TIME (S)

IMAGE CAPTURE 1–2
FEATURE EXTRACTION AND COMPRESSION
(FOR SEND IMAGE MODE)

1–1.5

SERVER-SIDE OPERATIONS TIME (MS)

FEATURE EXTRACTION
(FOR SEND IMAGE MODE)

100

VT MATCHING 100
FAST GEOMETRIC RERANKING (PER IMAGE) 0.46
GV (PER IMAGE) 30

THE SYSTEM LATENCY CAN BE BROKEN
DOWN INTO THREE COMPONENTS:

PROCESSING DELAY ON CLIENT,
TRANSMISSION DELAY, AND

PROCESSING DELAY ON SERVER.

IEEE SIGNAL PROCESSING MAGAZINE [73] JULY 2011

fails entirely, which increases
with the query size. We show
the percentage of transmissions
that experience a time-out in
Figure 9(b). The time-out per-
centage of transmitting the
compressed query features is much lower than that of trans-
mitting compressed query images because of their smaller
query size.

END-TO-END LATENCY
We compare end-to-end latency for the different schemes in
Figure 10. For WLAN, we observe that ,1 s query latency is
achieved for the send image mode. The send features mode is
slower because of the processing delay on the client. With such
fast response times over WLAN, we are able to operate our sys-
tem in a continuous mobile augmented reality mode [76].

For 3G networks, network latency remains the bottleneck as
seen in Figure 10. In this scenario, there is a significant benefit
in sending compressed features. The send features mode reduc-
es the system latency by two times compared with the send
image mode.

ENERGY CONSUMPTION
On a mobile device, we are constrained by the energy of the bat-
tery, and hence, conserving the energy is critical. We measure
the average energy consumption associated with a single query
using the Nokia Energy Profiler (http://store.ovi.com/con-
tent/17374) on the Nokia 5800 phone.

We show the average energy consumption for a single query
using send features and send image for WLAN and 3G network
connections in Figure 11. For 3G connections, the energy
 consumed in the send image mode is almost three times as
much as send features. The additional time needed to transmit

image data compared with fea-
ture data results in a greater
amount of energy being con-
sumed. For WLAN transmission,
send image consumes less ener-
gy, since feature extraction on

the mobile client is not required.
Finally, we compute the number of image queries the mobile

can send before the battery runs out of power. A typical phone
battery has voltage of 3.7 V and a capacity of ,1,000 mAh (or
,13.3 kJ). Hence, for 3G connections, the maximum number of
images that the mobile can send is 13.3 kJ/70 J 5 ,190 total
queries. For send features, we would be able to perform 13.3
kJ/21 J 5 ,630 total queries, which is three times as many que-
ries as the send image can perform. This difference becomes
even more important as we move toward streaming augmented
reality applications.

CONCLUDING REMARKS
Mobile visual search is ready for prime time. State-of-the-art
systems today achieve more than 95% recall at negligible false-
positive rate for databases with more than one million classes, a
recognition performance that is sufficient for many applica-
tions. The key is robust, and discriminative local features are
used in a bag-of-visual-words approach. Robustness against
scale changes and rotation is achieved by interest-point detec-
tion algorithms that robustly yield not only a location but also
feature-scale and dominant orientation. This permits feature
descriptors computed on canonical patches in a local coordi-
nate system. Robustness against brightness and contrast varia-
tions is achieved by normalizing the patch variance and using
only the image gradient to compute feature descriptors. This
takes care of much of the variability among corresponding
query and database features, but not all. Foreshortening affects
the feature descriptor, and correspondences can no longer be
established if the angle becomes extreme. Adding foreshortened

[FIG11] Average energy consumption of a single query using
send image and send features mode for various types of
transmission.

0

10

20

30

40

50

60

70

Image
(3G)

Feature
 (3G)

Image
(WLAN)

Feature
(WLAN)

E
ne

rg
y

(J
)

0

2

4

6

8

10

12

R
et

rie
va

l T
im

e
(s

)

JPG
(3G)

Feature
(3G)

Feature
Progressive

(3G)

JPG
(WLAN)

Feature
(WLAN)

Feature Extraction
Network Transmission
Image Recognition

[FIG10] An end-to-end latency for different schemes. Compared
to send image scheme, we achieve approximately four times
reduction in average system latency using progressive
transmission of CHoG feature descriptors in a 3G network.

FEATURE COMPRESSION IS A KEY
PROBLEM FOR VISUAL SEARCH TO

WORK WITH MOBILE DEVICES.

IEEE SIGNAL PROCESSING MAGAZINE [74] JULY 2011

descriptors to the database or
using affine invariant descriptors
are possible remedies. Robust -
ness against blur (particularly
motion blur) is typically lacking
but would be highly desirable. By
using clever hierarchical data structures such as VTs, fast
retrieval can be achieved in less than 1 s on a typical desktop
CPU for databases of more than one million images. Such speed
requires a precomputed inverted file index that is stored
 entirely in RAM, and seeking data on a hard disk would slow
down the retrieval considerably. Inverted index compression
can be used to fit even larger data structures in RAM. For large
databases, VTs must be combined with a GV stage to avoid false
positives. Geometric consistency checks are computationally
expensive, so it makes sense to use simple geometric reranking
to reduce the number of candidate images.

Feature compression is a key problem for visual search to
work with mobile devices. Sending a JPEG image as a query
over a slow wireless link can take a longer time; it is better to
extract the salient features on the phone instead and send these
features as the query to the server. Note that this approach also
provides a certain degree of privacy. For a small database, com-
pressed database features could be stored on the mobile device,
and matching could be performed directly on the device with-
out wireless communication. One can compress well-known
feature descriptors, such as SIFT, trading off recognition perfor-
mance against size. Better performance, however, is achieved by
the CHoG descriptor that was directly designed for rate-con-
strained recognition. CHoG needs about 60 b/feature, including
its location.

As an example throughout, we have used the Stanford
Product Search system that implements many of the ideas dis-
cussed. We observe that the processing latency on the client and
server is typically on the order of approximately 1 s. The trans-
mission delay depends on the network being used. For WLAN,
the transmission delay is insignificant, and transmitting a JPEG
image as a query is faster than extracting CHoG features on the
phone. For 3G networks, the transmission delay is the bottle-
neck in an end-to-end system latency. By transmitting feature
data, we can reduce end-to-end system latency to 2–3 s, com-
pared to sending the image that takes several times longer.
Somewhat counter to intuition, extracting and transmitting fea-
ture data on the mobile client requires three times less energy
than sending the image.

In the next few years, we can expect a broad range of
mobile visual search applications in domains ranging from art-
work, texts, books, CD covers, and buildings. State-of-the-art
technology works best on highly textured rigid planar objects
under controlled lighting conditions. The problem becomes
much more challenging for 3-D objects (e.g., buildings), espe-
cially when the lighting conditions of the query image are
drastically different from the reference database image. More
generic object categories like plants, furniture, and apparel are
challenging for recognition too. Text detection and optical

character recognition are chal-
lenging for blurry low-quality
camera phone images. However,
this is becoming less of a prob-
lem as smartphones become
pervasive.

Numerous open problems remain. Accurate and near-
instantaneous Web-scale visual search with billions of images
will likely remain as one of the grand challenges of multimedia
technology for the years to come. Also, we would like to per-
form mobile visual search at video rates without ever pressing a
button. Although faster processors and networks will get us
closer to this goal, lower-complexity image-analysis algorithms
are urgently needed. Hardware support on mobile devices
should also help. It is envisioned that an ongoing standardiza-
tion activity in MPEG on compact descriptors for visual search
will enable interoperability between databases and applications,
enable hardware support on mobile devices, and reduce load on
wireless networks carrying visual search related data.
Ultimately, we may expect to see ubiquitous mobile augmented
reality systems that continuously superimpose information and
links on everything the camera of a mobile device sees, thus
seamlessly linking the virtual world and the physical world.

AUTHORS
Bernd Girod (bgirod@stanford.edu) received his engineering
doctorate from the University of Hannover, Germany, and his
M.S. degree from Georgia Institute of Technology. He was a
professor in the Electrical Engineering Department of the
University of Erlangen-Nuremberg. He has been a professor
of electrical engineering and computer science in the
Information Systems Laboratory of Stanford University,
California, since 1999. He has published more than 450 con-
ference and journal papers, as well as five books. He received
the EURASIP Signal Processing Best Paper Award in 2002,
the IEEE Multimedia Communication Best Paper Award in
2007, the EURASIP Image Communication Best Paper Award
in 2008, as well as the EURASIP Technical Achievement
Award in 2004. He has been involved with several start-up
ventures, such as Polycom, Vivo Software, 8 3 8, and
RealNetworks. He is a Fellow of the IEEE, a member of the
German National Academy of Sciences (Leopoldina), and a
fellow of EURASIP. His current research interests include
video compression, networked media systems, and image-
based retrieval.

Vijay Chandrasekhar (vijayc@stanford.edu) received his
M.S. and B.S. degrees in electrical and computer engineering
from Carnegie Mellon University. He is a Ph.D. student in the
Image, Video, and Multimedia Systems (IVMS) group in the
Department of Electrical Engineering at Stanford University. He
is a Member of the IEEE. His research focuses on content-based
image retrieval with a focus on low bitrate image retrieval for
mobile visual search applications.

David M. Chen (dmchen@stanford.edu) received his M.S.
and B.S. degrees in electrical engineering from Stanford

STATE-OF-THE-ART TECHNOLOGY
WORKS BEST ON HIGHLY TEXTURED

RIGID PLANAR OBJECTS UNDER
CONTROLLED LIGHTING CONDITIONS.

IEEE SIGNAL PROCESSING MAGAZINE [75] JULY 2011

University. He is a Ph.D. student in the IVMS group in the
Department of Electrical Engineering at Stanford University.
He received a departmental Outstanding Teaching Assistant
Award for the graduate-level digital image processing class
taught at Stanford, in which he helped to integrate mobile
image processing on android into the curriculum. He is a
Member of the IEEE. His research interests include large-scale
content-based image and video retrieval for mobile visual
search applications.

Ngai-Man Cheung (ncheung@stanford.edu) received his
Ph.D. degree from the University of Southern California (USC),
Los Angeles, in 2008. He is currently a postdoctoral researcher
with the Information Systems Laboratory at Stanford University.
He is a Member of the IEEE. His research interests include mul-
timedia signal processing, compression, and retrieval.

Radek Grzeszczuk (radek.grzeszczuk@nokia.com) received
his Ph.D. degree in computer science from the University of
Toronto. He is a principal scientist at Nokia Research Center,
Palo Alto. He is a Member of the IEEE. His research interests
include mobile visual search, computer graphics, and augment-
ed reality.

Yuriy Reznik (yreznik@qualcomm.com) received his Ph.D.
degree in computer science from Kiev University. He was a
coinventor of RealAudio and RealVideo algorithms at
RealNetworks, Inc. (Seattle, Washington, 1998–2005) and a
contributor to several speech-, audio-, and video-coding stan-
dards, including ITU-T H.264/MPEG-4 AVC, MPEG-4 ALS,
MPEG-C parts 1,2, and ITU-T G.718. He is currently a staff
engineer at Qualcomm Inc., in San Diego, California, and
cochair of an AdHoc Group on Visual Search in MPEG. He is a
Senior Member of the IEEE and a coauthor of more than 50
academic papers and more than 30 (including nine granted)
U.S. patents.

Gabriel Takacs (gtakacs@stanford.edu) began his academic
career at Harvey Mudd College, where he studied systems engi-
neering before starting graduate school at Stanford University.
At Stanford, he has been working on mobile augmented reality
and visual search. He is a Member of the IEEE.

Sam S. Tsai (sstsai@stanford.edu) is a Ph.D candidate in
the Department of Electrical Engineering in Stanford
University. He is a Member of the IEEE. His research interests
include image and video compression, mobile multimedia sys-
tems, and mobile image retrieval.

Ramakrishna Vedantham (Ramakrishna.Vedantham@
nokia.com) received his M.S. degree in electrical engineering
in 2000 from the University of Texas at Dallas and B.Tech.
degree in electrical and computer engineering in 1996 from
the National Institute of Technology, Calicut, India. He is a
senior researcher at Nokia Research Center, Palo Alto. He is a
Member of the IEEE. His current research interests include
mobile augmented reality systems, content-based image
retrieval, and visual navigation.

REFERENCES
[1] Google. (2009). Google Goggles [Online]. Available: http://www.google.com/
mobile/goggles/

[2] Nokia. (2006). Nokia Point and Find [Online]. Available: http://www.
pointandfind.nokia.com

[3] Kooaba. (2007). Kooaba [Online]. Available: http://www.kooaba.com

[4] B. Erol, E. Antúnez, and J. Hull, “Hotpaper: Multimedia interaction with paper
using mobile phones,” in Proc. 16th ACM Multimedia Conf., New York, 2008.

[5] J. Graham and J. J. Hull, “Icandy: A tangible user interface for itunes,” in
Proc. CHI ’08: Extended Abstracts on Human Factors in Computing Systems,
Florence, Italy, 2008.

[6] J. J. Hull, B. Erol, J. Graham, Q. Ke, H. Kishi, J. Moraleda, and D. G. Van Olst,
“Paper-based augmented reality,” in Proc. 17th Int. Conf. Artificial Reality and
Telexistence (ICAT), Washington, DC, 2007.

[7] Amazon. (2007). SnapTell [Online]. Available: http://www.snaptell.com

[8] G. Takacs, V. Chandrasekhar, N. Gelfand, Y. Xiong, W. Chen, T. Bismpi-
giannis, R. Grzeszczuk, K. Pulli, and B. Girod, “Outdoors augmented reality
on mobile phone using loxel-based visual feature organization,” in Proc. ACM
Int. Conf. Multimedia Information Retrieval (ACM MIR), Vancouver, Canada,
Oct. 2008.

[9] J. Sivic and A. Zisserman, “Video Google: A text retrieval approach to object
matching in videos,” in Proc. IEEE Int. Conf. Computer Vision (ICCV), Washing-
ton, DC, 2003.

[10] D. Nistér and H. Stewénius, “Scalable recognition with a vocabulary tree,” in
Proc. IEEE Conf. Computer Vision and Pattern Recognition (CVPR), New York,
June 2006.

[11] H. Jegou, M. Douze, and C. Schmid, “Hamming embedding and weak geometric
consistency for large scale image search,” in Proc. European Conf. Computer Vision
(ECCV), Berlin, Heidelberg, 2008.

[12] J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman, “Lost in quantiza-
tion—Improving particular object retrieval in large scale image databases,” in
Proc. IEEE Conf. Computer Vision and Pattern Recognition (CVPR), Anchorage,
AK, June 2008.

[13] C. Schmid and R. Mohr, “Local grayvalue invariants for image retrieval,”
IEEE Trans. Pattern Anal. Machine Intell., vol. 19, pp. 530–535, 1997.

[14] S. S. Tsai, D. M. Chen, V. Chandrasekhar, G. Takacs, N. M. Cheung, R. Vedan-
tham, R. Grzeszczuk, and B. Girod, “Mobile product recognition,” in Proc. ACM
Multimedia (ACM MM), Florence, Italy, Oct. 2010.

[15] D. Lowe, “Distinctive image features from scale-invariant keypoints,” Int. J.
Comput. Vis., vol. 60, no. 2, pp. 91–110, 2004.

[16] K. Mikolajczyk, T. Tuytelaars, C. Schmid, A. Zisserman, J. Matas, F. Schaf-
falitzky, T. Kadir, and L. Van Gool, “A comparison of affine region detectors,” Int.
J. Comput. Vis., vol. 65, no. 1-2, pp. 43–72, 2005.

[17] C. Harris and M. Stephens, “A combined corner and edge detector,” in Proc.
4th Alvey Vision Conf., 1988.

[18] J. Matas, O. Chum, M. Urban, and T. Pajdla, “Robust wide baseline stereo from
maximally stable extremal regions,” in Proc. British Machine Vision Conf. (BMVC),
Cardiff, Wales, Sept. 2002.

[19] E. Rosten and T. Drummond, “Machine learning for high speed corner de-
tection,” in Proc. European Conf. Computer Vision (ECCV), Graz, Austria, May
2006.

[20] H. Bay, T. Tuytelaars, and L. Van Gool, “SURF: Speeded up robust features,”
in Proc. European Conf. Computer Vision (ECCV), Graz, Austria, May 2006.

[21] G. Takacs, V. Chandrasekhar, D. M. Chen, S. S. Tsai, R. Grzeszczuk, and B.
Girod, “Unified real-time tracking and recognition with rotation invariant fast
features,” in Proc. IEEE Conf. Computer Vision and Pattern Recognition (CVPR),
SFO, CA, to be published.

[22] K. Mikolajczyk and C. Schmid, “Performance evaluation of local descrip-
tors,” IEEE Trans. Pattern Anal. Machine Intell., vol. 27, no. 10, pp. 1615–1630,
2005.

[23] D. Lowe, “Object recognition from local scale-invariant features,” in Proc.
IEEE Conf. Computer Vision and Pattern Recognition (CVPR), Los Alamitos, CA,
Aug. 1999.

[24] H. Bay, A. Ess, T. Tuytelaars, and L. V. Gool, “Speeded-up robust feature,”
Comput. Vis. Image Understand., vol. 110, no. 3, pp. 346–359, 2008.

[25] V. Chandrasekhar, G. Takacs, D. M. Chen, S. S. Tsai, R. Grzeszczuk, and B.
Girod, “CHoG: Compressed histogram of gradients—A low bit rate feature de-
scriptor,” in Proc. IEEE Conf. Computer Vision and Pattern Recognition (CVPR),
Miami, FL, June 2009.

[26] V. Chandrasekhar, Y. Reznik, G. Takacs, D. M. Chen, S. S. Tsai, R. Grzeszc-
zuk, and B. Girod, “Study of quantization schemes for low bitrate CHoG descrip-
tors,” in Proc. IEEE Int. Workshop Mobile Vision (IWMV), San Francisco, CA,
June 2010.

[27] S. Winder and M. Brown, “Learning local image descriptors,” in Proc. IEEE Conf.
Computer Vision and Pattern Recognition (CVPR), Minneapolis, MN, 2007, pp. 1–8.

IEEE SIGNAL PROCESSING MAGAZINE [76] JULY 2011

[28] S. Winder, G. Hua, and M. Brown, “Picking the best daisy,” in Proc. Com-
puter Vision and Pattern Recognition (CVPR), Miami, FL, June 2009.

[29] V. Chandrasekhar, M. Makar, G. Takacs, D. M. Chen, S. S. Tsai, N. M. Cheung,
R. Grzeszczuk, Y. Reznik, and B. Girod, “Survey of SIFT compression schemes,”
in Proc. Int. Mobile Multimedia Workshop (IMMW), IEEE Int. Conf. Pattern Rec-
ognition (ICPR), Istanbul, Turkey, Aug. 2010.

[30] C. Yeo, P. Ahammad, and K. Ramchandran, “Rate-efficient visual correspon-
dences using random projections,” in Proc. IEEE Int. Conf. Image Processing
(ICIP), San Diego, CA, Oct. 2008.

[31] A. Torralba, R. Fergus, and Y. Weiss, “Small codes and large image databases
for recognition,” in Proc. IEEE Conf. Computer Vision and Pattern Recognition
(CVPR), Anchorage, AK, 2008.

[32] Y. Weiss, A. Torralba, and R. Fergus, “Spectral hashing,” in Proc. Neural
Information Processing Systems (NIPS), Vancouver, BC, Canada, Dec. 2008.

[33] V. Chandrasekhar, G. Takacs, D. M. Chen, S. S. Tsai, and B. Girod, “Trans-
form coding of feature descriptors,” in Proc. Visual Communications and Image
Processing Conf. (VCIP), San Jose, CA, Jan. 2009.

[34] H. Jegou, M. Douze, and C. Schmid, “Product quantization for nearest
neighbor search,” IEEE Trans. Pattern Anal. Machine Intell., 2010, to be
published.

[35] Y. Ke and R. Sukthankar, “PCA-SIFT: A more distinctive representation for
local image descriptors,” in Proc. Conf. Computer Vision and Pattern Recogni-
tion (CVPR). IEEE Computer Society, 2004, vol. 2, pp. 506–513.

[36] G. Hua, M. Brown, and S. Winder, “Discriminant embedding for local image
descriptors,” in Proc. Int. Conf. Computer Vision (ICCV), Rio de Janeiro, Brazil,
2007.

[37] P. Brasnett and M. Z. Bober, “Robust visual identifier using the trace trans-
form,” in Proc. IET Visual Information Engineering Conf. (VIE), London, U.K.,
July 2007.

[38] M. Calonder, V. Lepetit, and P. Fua, “Brief: Binary robust independent el-
ementary features,” in Proc. European Conf. Computer Vision (ECCV), Crete,
Greece, Oct. 2010.

[39] M. Johnson, “Generalized descriptor compression for storage and matching,”
in Proc. British Machine Vision Conf. (BMVC), London, U.K., June 2010.

[40] J. Philbin, M. Ishard, J. Sivic, and A. Zisserman, “Descriptor learning for effi-
cient retrieval,” in Proc. European Conf. Computer Vision (ECCV), Crete, Greece,
Sept. 2010.

[41] N. Dalal and B. Triggs, “Histograms of oriented gradients for human detec-
tion,” in Proc. IEEE Conf. Computer Vision and Pattern Recognition (CVPR), San
Diego, CA, June 2005.

[42] W. T. Freeman and M. Roth, “Orientation histograms for hand gesture rec-
ognition,” in Proc. Int. Workshop Automatic Face and Gesture Recognition, 1994,
pp. 296–301.

[43] V. Chandrasekhar, D. M. Chen, A. Lin, G. Takacs, S. S. Tsai, N. M. Cheung,
Y. Reznik, R. Grzeszczuk, and B. Girod, “Comparison of local feature descriptors
for mobile visual search,” in Proc. IEEE Int. Conf. Image Processing (ICIP), Hong
Kong, Sept. 2010.

[44] Y. Reznik, V. Chandrasekhar, G. Takacs, D. M. Chen, S. S. Tsai, R. Grzeszc-
zuk, and B. Girod, “Fast quantization and matching of histogram-based image
features,” in Proc. SPIE Workshop Applications of Digital Image Processing
(ADIP), San Diego, CA, Aug. 2010.

[45] V. Chandrasekhar, G. Takacs, D. M. Chen, S. S. Tsai, R. Grzeszczuk, Y. Reznik,
and B. Girod, “Compressed histogram of gradients: A low bitrate descriptor,” Int.
J. Comput. Vis. (Special Issue on Mobile Vision), to be published.

[46] E. Tola, V. Lepetit, and P. Fua, “A fast local descriptor for dense matching,” in
Proc. Conf. Computer Vision and Pattern Recognition, 2008.

[47] S. S. Tsai, D. M. Chen, G. Takacs, V. Chandrasekhar, J. P. Singh, and B. Girod,
“Location coding for mobile image retreival systems,” in Proc. Int. Mobile Multi-
media Communications Conf. (MobiMedia), London, U.K., Sept. 2009.

[48] S. S. Tsai, D. Chen, G. Takacs, V. Chandrasekhar, J. P. Singh, and B. Girod,
“Location coding for mobile image retrieval,” in Proc. Int. Mobile Multimedia
Communications Conf. (Mobimedia), London, U.K., Sept. 2009.

[49] G. Schindler, M. Brown, and R. Szeliski, “City-scale location recognition,” in
Proc. IEEE Computer Society Conf. Computer Vision and Pattern Recognition
(CVPR), Minneapolis, MN, June 2007.

[50] O. Chum, J. Philbin, J. Sivic, M. Isard, and A. Zisserman, “Total recall: Au-
tomatic query expansion with a generative feature model for object retrieval,” in
Proc. IEEE Conf. Computer Vision and Pattern Recognition (CVPR), Minneapo-
lis, MN, 2007.

[51] T. Yeh, J. J. Lee, and T. J. Darrell, “Adaptive vocabulary forests for dynamic in-
dexing and category learning,” in Proc. IEEE Int. Conf. Computer Vision (ICCV),
Rio de Janeiro, Brazil, 2007.

[52] O. Chum, J. Philbin, and A. Zisserman, “Near duplicate image detection:
min-hash and tf-idf weighting,” in Proc. British Machine Vision Conf. (BMVC),
Leeds, U.K., Sept. 2008.

[53] O. Chum, M. Perdoch, and J. Matas, “Geometric min-hashing: Finding a
(thick) needle in a haystack,” in Proc. IEEE Conf. Computer Vision and Pattern
Recognition (CVPR), Miami, FL, June 2009.

[54] X. Zhang, Z. Li, L. Zhang, W.-Y. Ma, and H.-Y. Shum, “Efficient indexing
for large-scale visual search,” in Proc. IEEE Int. Conf. Computer Vision (ICCV),
Kyoto, Japan, Sept. 2009.

[55] A. Mikulik, M. Perdoch, O. Chum, and J. Matas, “Learning a fine vocabulary,”
in Proc. European Conf. Computer Vision (ECCV), Crete, Greece, Sept. 2010.

[56] P. Turcot and D. Lowe, “Better matching with fewer features: The selection
of useful features in large database recognition problems,” in Proc. Workshop
Emergent Issues in Large Amounts of Visual Data (WS-LAVD) and Int. Conf.
Computer Vision (ICCV), Kyoto, Japan, Oct. 2009.

[57] Y. Li, N. Snavely, and D. P. Huttenlocher, “Location recognition using pri-
oritized feature matching,” in Proc. European Conf. Computer Vision (ECCV),
Crete, Greece, Sept. 2010.

[58] D. M. Chen, S. S. Tsai, V. Chandrasekhar, G. Takacs, R. Vedantham, R.
Grzeszczuk, and B. Girod, “Inverted index compression for scalable image
matching,” in Proc. IEEE Data Compression Conf. (DCC), Snowbird, UT,
Mar. 2010.

[59] H. Jegou, M. Douze, and C. Schmid, “Packing bag-of-features,” in Proc. IEEE
Int. Conf. Computer Vision (ICCV), Kyoto, Japan, Sept. 2009.

[60] H. Jegou, M. Douze, C. Schmid, and P. Perez, “Aggregating local descriptors
into a compact image representation,” in Proc. IEEE Conf. Computer Vision and
Pattern Recognition (CVPR), San Francisco, CA, June 2010.

[61] F. Perronnin, Y. Liu, J. Sanchez, and H. Poirier, “Large-scale image retrieval
with compressed fisher vectors,” in Proc. IEEE Conf. Computer Vision and Pat-
tern Recognition (CVPR), San Francisco, CA, June 2010.

[62] J. Zobel and A. Moffat, “Inverted files for text search engines,” ACM Comput.
Surveys, vol. 38, no. 2, p. 6, July 2006.

[63] A. Said, “Comparative analysis of arithmetic coding computational complex-
ity,” HP Labs Tech. Rep., 2004.

[64] V. N. Anh and A. Moffat, “Inverted index compression using word-aligned
binary codes,” Inform. Retrieval, vol. 8, no. 1, pp. 151–166, Jan. 2005.

[65] A. Moffat and V. N. Anh, “Binary codes for non-uniform sources,” in Proc.
IEEE Data Compression Conf. (DCC), Snowbird, UT, Mar. 2005.

[66] M. A. Fischler and R. C. Bolles, “Random sample consensus: A paradigm for
model fitting with applications to image analysis and automated cartography,”
Commun. ACM, vol. 24, no. 6, pp. 381–395, 1981.

[67] F. Schaffalitzky and A. Zisserman, “Multi-view matching for unordered image
sets, or ‘how do i organize my holiday snaps?’,” in Proc. 7th European Conf. Com-
puter Vision-Part I (ECCV ’02), London, U.K. Springer-Verlag, 2002, pp. 414–431.

[68] V. Ferrari, T. Tuytelaars, and L. Van Gool, “Simultaneous object recognition
and segmentation by image exploration,” in Proc. European Conf. Computer Vi-
sion (ECCV), Prague, Czech Republic, May 2004.

[69] Z. Wu, Q. Ke, M. Isard, and J. Sun, “Bundling features for large scale partial-
duplicate web image search,” in Proc. IEEE Conf. Computer Vision and Pattern
Recognition (CVPR), Miami, FL, 2009.

[70] O. Chum, J. Matas, and J. V. Kittler, “Locally optimized RANSAC,” in Proc.
DAGM Symp., Magdeburg, Germany, Sept. 2003.

[71] O. Chum, T. Werner, and J. Matas, “Epipolar geometry estimation via ransac
benefits from the oriented epipolar constraint,” in Proc. Int. Conf. Pattern Recog-
nition (ICPR), Cambridge, U.K., Aug. 2004.

[72] J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman, “Object retrieval
with large vocabularies and fast spatial matching,” in Proc. IEEE Conf. Computer
Vision and Pattern Recognition (CVPR), Minneapolis, MN, 2007.

[73] S. S. Tsai, D. M. Chen, G. Takacs, V. Chandrasekhar, R. Vedantham, R.
Grzeszczuk, and B. Girod, “Fast geometric re-ranking for image based re-
trieval,” in Proc. IEEE Int. Conf. Image Processing (ICIP), Hong Kong, Sept.
2010.

[74] F. Schaffalitzky and A. Zisserman, “Automated scene matching in mov-
ies,” in Proc. ACM Int. Conf. Image and Video Retrieval, London, U.K., July
2002.

[75] D. M. Chen, S. S. Tsai, R. Vedantham, R. Grzeszczuk, and B. Girod. (2008,
Apr.). CD cover database—Query images [Online]. Available: http://vcui2.noki-
apaloalto.com/ dchen/cibr/testimages/

[76] D. M. Chen, S. S. Tsai, R. Grzeszczuk, R. Vedantham, and B. Girod, “Stream-
ing mobile augmented reality on mobile phones,” in Proc. Int. Symp. Mixed and
Augmented Reality (ISMAR), Orlando, FL, Oct. 2009. [SP]

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

