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ABSTRACT 

We study factorization techniques and performance of Discrete Cosine Transforms of various sizes (including non-
dyadic and odd numbers). In our construction we utilize an array of known techniques (such as Heideman's mapping 
between odd-sized DCT and DFT, Winograd fast DFT algorithms, prime-factoring, etc), and also propose a new 
decimation strategy for construction of even-sized scaled transforms. We then analyze complexity and coding gain of 
such transforms with sizes 2-64 and identify ones that show best complexity/performance tradeoffs. 
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1. INTRODUCTION 
Discrete Cosine Transform of type II (DCT-II)1-3 is a fundamental operation performed by the majority of today’s image 
and video compression algorithms. It was first suggested by N. Ahmed, T. Natarajan, and K. R. Rao1, and subsequent 
research provided a number of theoretical arguments for its use, such as energy compaction property, asymptotic 
equivalence of DCT to the Karhunen-Loève transform for signals produced by Markov-1 process with high correlation 
coefficient, etc. (see, e.g. [3, Chapter 3] for a survey of the related results).  

DCT-II of size 8 has served as the transform of choice in H.261, JPEG, MPEG-1, MPEG-2, H.263, and MPEG-4 visual 
standards2,9-13. More recent standards, such as MPEG-4 AVC | H.26414, VC-115, and AVS16 have adopted integer 
approximations of DCT-II with transform sizes: 4, 8, and 16. An emerging JPEG-XR image compression standard17 uses 
overlapping transforms, which are also based on 4-point DCT-II kernels. 

The use of multiple transform sizes in more recent algorithms has been justified by changing image statistics and the 
need to adapt to them. E.g., given a flat region the use of a large transform would give better compression efficiency. 
On the other hand, given an image with a sharp edge, and a coarse quantization step size, it might be better to apply 
several smaller transforms as this would smear it less (the quantization error propagation stays bounded within each 
transform’s block). In this respect, the choice of 4x4 and 16x16 transforms in H.264 standard seemed reasonable for 
achieving such adaptation.  

At the same time, the authors are not aware of any fundamental law or reason suggesting that transforms of dyadic sizes 
(such as 2, 4, 8, 16) should be any better than transforms of other (e.g. using adjacent odd numbers) sizes. Most likely 
arguments for the use of dyadic sizes could have been: 

- perceived implementation convenience (ease of addressing, alignment with memory banks), and 
- known fast algorithms for computation of such transforms. 

The second argument, indeed, has its historical roots: first algorithms for computing DCT have relied on FFT2, which in 
its original (Cooley-Tukey) form was designed for dyadic transform sizes. However, more advanced research on fast 
DFT and DCT algorithms (cf. S. Winograd24, M.T. Heideman20, C.W. Kok24, as well as21), indicate that some of the non-
dyadic-sized transforms can be significantly less complex than dyadic-sized ones. In some cases, e.g, one reported in21, 
the amount of computational or power savings can be close to a factor of 2, and we believe such phenomena might bring 
opportunities for improving designs of future image and video coding algorithms.  
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In this paper we review some known results, derive few missing factorizations, and analyze complexity / coding gain 
tradeoffs of DCT-II transforms with sizes in the range of 2-64. Based on this analysis we suggest transform sizes and 
their progressions that appear to be most promising for use in image and video coding.  

Section 2 provides definitions of DCT-II and related transforms and discusses their performance metrics. Section 3 
reviews transforms that are currently used in image and video coding standards. It also identifies performance gap left by 
current transform choices. Section 4 analyses complexity and coding gain of transforms of various sizes, and identifies 
transforms that are most promising in this respect. Conclusions are presented in Section 6. Appendix A reviews 
techniques that have been used to derive transform factorizations and their complexity estimates.  Appendix B lists few 
examples of transforms that we have derived in our work. 

2. DEFINITIONS, PERFORMANCE AND COMPLEXITY METRICS 
Let { }  represent an input sequence.  , 0,1,...,nx n N= 1−

The DCT-II and inverse transforms over this sample are defined, correspondingly as2,3: 
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where ( ) 1/ 2kλ = , if  0, otherwise 1.k =

Using vector notation the above mappings can also be rewritten as: 
IIy C x= and  ( ) ( )1 TII IIx C y C

−
= = y  

where IIC is a matrix of transform factors.  

In order to study performance of transforms it is customary to assume that our input signal x is produced by Markov-1 
process with known adjacent element correlation parameter ρ . The covariance matrix of this process xR  therefore is 
given by:  

( ), , , 0,..., 1i j
xR i j i j Nρ −= = − . 

If we now apply a transform with matrix A to x, then the covariance of the output signal: 

y A x= , 
becomes: 

T
y xR A R A= . 

KLT transform [2] makes this matrix diagonal, which is ideal for subsequent quantization and coding. DCT-II was 
shown to achieve essentially the same result, but only when 1ρ → 2,3. 

Transform efficiency metric19 provides a simple tool for measuring degree to which transform decorrelates input signal 
(i.e. turns its covariance matrix into diagonal one): 
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where rij are the elements of . It is easy to see that KLT will always have efficiency of 100%, whereas DCT-II will 
show lower numbers (decreasing with smaller 

yR
ρ  and/or larger block sizes).  

Transform coding gain 4  is another metric, defined as follows: 
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Fig. 1. Popular practical implementations of 8-point DCT-II: factorization by Loeffler, Ligtenberg, and Moschytz5 (left), 

and scaled transform factorization by Arai, Agui, and Nakajima6 (right). Both factorization use multiplications by 
factors: .  ( ) ( )cos / 16 , sin / 16k kC k S kπ π= =

 

where 2
ixσ  denotes variance of i-th transform coefficient (that is i-th diagonal element in matrix ), and yR 2

if  denotes 
the L2-norm of i-th basis function of the transform matrix (which turns to 1 for transforms with orthonormal bases). 
In essence, this metric says what would be the reduction of MSE due to transform coding (in comparison of PCM vs 
transform-based encoder using scalar quantizer and optimal bit-allocation strategy) under sufficiently high rates4. 

In our analysis we will use both of these metrics, although coding gain will be of primary interest.  

Additionally, in this work we will estimate complexity of computing transforms of various sizes.  

There will be two types of estimates that we will provide: 
- complexity of computing the entire (orthogonal) transform;  
- complexity of computing only scaled transform. 

The transform is said to be scaled, when some of its factors are moved all the way to the front of the transform and 
excluded from computation. I.e., the transform matrix A becomes: 

 A DA= Π ,  

where  is some permutation matrix, D is a diagonal matrix of scale factors, and  Π A is a matrix of the remaining 
(scaled) transform. In systems employing scaled transform designs (such as, e.g. MPEG-4 AVC/H.264 standard)  the 
multiplications by scale factors are usually absorbed into the quantization stage, therefore reducing complexity of the 
encoder (or decoder).  

In order to estimate complexity, we will use best existing or derive new factorizations of transforms of various sizes, and 
then report the numbers of operations involved, such as: 

- the numbers of multiplications (by irrational constant factors, prior to integerization); 
- the number of additions (which will include the number of subtractions, as both assumed to be of same 

complexity); and 
- the number of bit-wise shift operations (associated with products by dyadic constants). 

We will also report a combined and normalized transform complexity number: 

( ) 3m a sN
N

ξ + +
=  

where N is a transform size, and m, a, and s denote the numbers of multiplications, additions, and shifts correspondingly. 
The weight 3 given to multiplications in this formula represents typical costs of their implementations by mapping them 
into integer arithmetic with subsequent unfolding into sequences of additions and shifts (see 8 and references therein).  
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Fig. 2. Relationship between 4-point DCT-II (left) and 4-point “integer transform” of MPEG-4 AVC | H.264 standard. 

3. TRANSFORMS CURRENTLY USED FOR VIDEO CODING 
We first briefly review main types of transforms currently used in video coding. 

3.1  8x8 DCT-II transform 
DCT-II of size 8 was the original choice for transforms for H.261, JPEG, MPEG-1,2,4, and other early image and video 
coding algorithms 9. Best known factorizations for computing such transforms include (see Fig 1): 

- Loeffler, Ligtenberg, and Moschytz (LLM) factorization5, requiring 11 multiplications and 29 additions; and 
- Arai, Agui, and Nakajima (AAN) scaled factorization6, requiring only 5 multiplications and 29 additions per 

scaled 8-point transform. 

Many efficient fixed-point approximations of 8-point DCT-II have also been derived9. Among least complex fixed-point 
DCT-II realizations is the algorithm of Reznik, Hinds, and Rijavec7: it uses only 42 addition and 16 shift operations per 
scaled 8-point transform.  

Recently developed MPEG-C Part 2 standard8,9 is another fixed-point approximation of DCT-II. This standard offers 
much higher precision (satisfying all precisions tests of MPEG standards), and it also has a very reasonable complexity: 
44 additions and 20 shifts per 8-point transform. 

3.2  4x4 transform in MPEG-4 AVC | H.264 standard 
MPEG-4 AVC | H.264 standard14 defines a 4-point “integer transform”, which is essentially a conversion of a 4-point 
DCT-II factorization into a scaled form (see Fig. 2) and then using approximation for the remaining transform factors: 

( ) ( )3 3
8 8cos / sin 0.41421... 1 / 2π π = ≈ . 

In order to make such a transform orthogonal, its scale factors must also be adjusted: 

( )3 5
8 22 / sin π ≈  

We note that MPEG-4 AVC | H.264 standard14 actually defines asymmetrically scaled versions of forward and inverse 
transforms, but conceptually they are equivalent to the described design. 

Complexity-wise 4-point H.264 transform requires only 8 additions and 2 shifts to implement. It attains coding gain of 
5.375 dB, and efficiency of 95.2426 %. Compared to an ideal 4-point DCT-II, H.264 transform shows only 0.02dB loss 
in coding gain, and about 0.5% loss in efficiency.  

3.3  8x8 transform in MPEG-4 AVC | H.264 standard 
This transform can also be derived by starting with 8-point DCT-II factorization (see Fig. 3) and converting it into a 
scaled form. Note that design of upper (even portion) of the transform in this case becomes identical to the design of 4-
point transform in H.264. 

In lower (odd) portion, we use the following approximations: 
( ) ( )16 16sin / cos 0.1989... 1/4, 2 1.4142... 3/2π π = ≈ = ≈  

and also replace scale factors with 
( ) 17

16 4 2
2 2 / cos π ≈  

in order to make such transform orthogonal. 
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Fig. 3. Relationship between 8-point DCT-II (left) and 8-point “integer transform” of MPEG-4 AVC | H.264 standard. 

 

We note that initial 8-point factorization used in H.264 standard14 appears to be less efficient than well-known LLM or 
AAN factorizations (it needs at least 13 multiplications and 31 additions to implement), but it becomes much simpler by 
conversion to scaled and then fixed point form. 

The full complexity of 8-point transform in H.264 is 32 additions and 10 shifts. Its coding gain and efficiency results are 
summarized in Table 1. As evident, the price to for such simple fixed-point design is close to 0.1dB loss in coding gain 
and 1.5% loss in efficiency as compared to true (infinite precision) 8-point DCT-II transform. 

Table 1. Comparison of 8-point transforms. 

Transform  Coding gain [dB] (p=0.95) Efficiency [%] (p=0.95)  
DCT-II of size 8:                 8.8462  93.9912 
H.264 transform of size 8:  8.7832  92.4576 

 

3.4  16x16 transform in MPEG-4 AVC | H.264 
The 16-point transform (so-called “hierarchical transform”) in MPEG-4 AVC | H.264 standard 14 is essentially a cascade 
of five 4-point transforms, shown in Fig.4. It can also be presented in matrix notation as follows: 
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where W4 denotes matrix of a “second stage” transform, I4 and I16 denote identity matrices of sizes 4 and 16 
correspondingly, O3 denotes zero matrix of size 3, and ⊗ is a Kroneker product.  

It is worth noting, is that at early stage of the development of the H.264 standard14 its 16-point transform was actually a 
cascade of nested 4-point DCT-II approximations. The second stage transform was later replaced with Walsh-Hadamard 
transform. In Table 1 we show coding gains and efficiencies of full 16-point DCT-II and two cascaded transform designs 
produced in the development of H.264.  
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Fig. 4. Hierarchical 16-point transform of MPEG-4 AVC | H.264 standard. 

 

Table 2. Comparison of 16-point transforms. 

Transform  Coding gain [dB] (p=0.95) Efficiency [%] (p=0.95) 
DCT-II of size 16:                    9.45547 88.4518 
Cascade of DCT-II of size 4:           8.73236 72.3026 
MPEG-4 AVC | H.264 16x16 transform 8.5663 67.6576 

 

Based on these estimates, it appears that 16-point transform in H.264 has close to 1dB loss in coding gain (and over 20% 
loss in efficiency) as compared to full 16-point DCT-II.  While some loss of efficiency due to cascade-style design could 
have been expected (see e.g. 18), such a major drop in efficiency is actually very surprising. 

 

3.5 Comparison with DCT-II of other sizes 
We are now prepared to have a quick initial look at how these known transforms stack against DCT-II transforms of 
other possible sizes in terms of coding gain (see Fig. 5).  

Based on this picture we immediately notice that: 

- the choice of 8-point transforms in early video codecs has left a margin of over 1dB of coding gain unutilized; 

- the choice of transforms in MPEG-4 AVC | H.264 standard is rather surprising: 4x4 transforms have 
significantly smaller coding gain, and hierarchical 16x16 transform appears to perform worse than 8-point 
DCT-II in earlier codecs! 

- in order to capture the reamining1dB of gain (beyond what is reachable by 8-point DCT-II)  it will be necessary 
to design transforms of considerably larger (30-40 points) sizes; 

- there is absolutely no indication that transforms must be of dyadic sizes – coding gain simply grows 
monotonically with size. 

Our next step is to look at complexity characteristics of transforms of various sizes.  

 



 
 

 
 

 
Fig. 5. Coding gain of DCT-II of arbitrary sizes and choices of transforms in current image and 

video coding standards (in all cases coding gain is measured for p=0.95). 
 

 
Fig 6. Analysis of complexity of DCT-II factorizations of sizes 2—64.  

 

4. ANALYSIS OF COMPLEXITY AND PERFORMANCE OF TRANSFORMS OF 
VARIOUS SIZES 

We summarize our complexity and coding gain analysis in Table 3.  

As indicated earlier, we present are two types of complexity estimates: for complete transforms (with possibly removed 
one uniform factor for all coefficients) and for scaled ones. In both cases, these complexity estimates are obtained by 



 
 

 
 

constructing factorizations of transforms of different sizes and counting all operations that they require. Since the 
process of construction of such factorizations is rather laborious, we move all the details (and descriptions of techniques 
that we’ve utilized) in Appendix A.  
 

Table 3. Complexity vs Coding Gain of DCT-II transforms of sizes 2-64. 

Complexity upper bounds [m – multiplications, a – additions, s –  shifts] N Prime  
Factors Non-scaled            (3m+a+s)/N Scaled                    (3m+a+s)/N 

Coding  
Gain [dB] 

2 2 2a             (1) 2a             (1) 5.05498 
3 3 2m+4a+1s       (3.67) 4a+1s          (1.67) 6.73254 
4 2^2 3m+9a          (4.5) 1m+9a          (3) 7.57013 
5 5 4m+13a+1s      (5.2) 2m+13a+1s      (4) 8.07242 
6 2,3 5m+16a+2s      (5.5) 1m+16a+2s      (3.5) 8.40724 
7 7 8m+30a         (7.71) 6m+30a         (6.86) 8.64645 
8 2^3 11m+29a        (7.75) 5m+29a         (5.5) 8.82591 
9 3^2 8m+34a+2s      (6.67) 6m+34a+2s      (6) 8.96556 
10 2,5 13m+40a+3s     (8.2) 6m+40a+3s      (6.1) 9.07734 
11 11 20m+74a        (12.2)  9.16886 
12 2^2,3 16m+49a+5s     (8.5) 6m+49a+5s      (6) 9.24518 
13 13 20m+82a        (10.9)  9.30981 
14 2,7 23m+80a+1s     (10.7) 14m+80a+1s     (8.79) 9.36526 
15 3,5 14m+70a+3s     (7.67)  9.41335 
16 2^4 30m+81a+1s     (10.8) 16m+81a+1s     (8.13) 9.45547 
17 17 35m+141a       (14.5)  9.49268 
18 2,3^2 25m+94a+5s     (9.67) 14m+94a+5s     (7.83) 9.52578 
19 19 38m+168a       (14.8)  9.55542 
20 2^2,5 36m+109a+7s    (11.2) 19m+109a+7s    (8.65) 9.58213 
21 3,7 26m+130a       (9.9)  9.60633 
22 2,11 51m+180a+1s    (15.2) 40m+180a+1s    (13.7) 9.62834 
23 23 87m+314a       (25)  9.64847 
24 2^3,3 44m+133a+11s   (11.5) 22m+133a+11s   (8.75) 9.66693 
25 5^2 66m+186a       (15.4)  9.68394 
26 2,13 53m+202a+1s    (13.9) 40m+202a+1s    (12.4) 9.69966 
27 3^3 42m+140a       (9.85)  9.71423 
28 2^2,7 60m+201a+3s    (13.7) 37m+201a+3s    (11.3) 9.72778 
29 29 95m+355a       (22.1)  9.7404 
30 2,3,5 43m+184a+7s    (10.7) 28m+184a+7s    (9.17) 9.7522 
31 31 80m+358a       (19.3)  9.76325 
32 2^5 76m+209a+3s    (13.8) 46m+209a+3s    (10.9) 9.77362 
34 2,17 87m+332a+1s    (17.5) 70m+332a+1s    (16) 9.79256 
35 5,7 53m+299a       (13.1)  9.80123 
36 2^2,3^2 68m+241a+11s   (12.7) 39m+241a+11s   (10.3) 9.80943 
37 37 110m+424a      (20.4)  9.8172 
38 2,19 95m+392a+1s    (17.8) 76m+392a+1s    (16.3) 9.82457 
40 2^3,5 92m+277a+15s   (14.2) 55m+277a+15s   (11.4) 9.83822 
42 2,3,7 73m+322a+1s    (12.9) 52m+322a+1s    (11.4) 9.8506 
44 2^2,11 124m+425a+3s   (18.2) 91m+425a+3s    (15.9) 9.86188 
45 3^2,5 65m+358a       (12.3)  9.86715 
46 2,23 197m+696a+1s   (28) 174m+696a+1s   (26.5) 9.87219 
48 2^4,3 112m+337a+23s  (14.5) 66m+337a+23s   (11.6) 9.88167 
50 2,5^2 157m+446a+1s   (18.4) 132m+446a+1s   (16.9) 9.89041 
52 2^2,13 132m+481a+3s   (16.9) 93m+481a+3s    (14.7) 9.8985 
54 2,3^3 111m+360a+1s   (12.9) 84m+360a+1s    (11.4) 9.906 
56 2^3,7 148m+485a+7s   (16.7) 97m+485a+7s    (14) 9.91298 
58 2,29 219m+796a+1s   (25.1) 190m+796a+1s   (23.6) 9.91949 
60 2^2,3,5 116m+457a+15s  (13.7) 71m+457a+15s   (11.4) 9.92557 
62 2,31 191m+808a+1s   (22.3) 160m+808a+1s   (20.8) 9.93128 
63 3^2,7 98m+635a       (14.7)  9.934 
64 2^6 184m+513a+7s   (16.8) 122m+513a+7s   (13.8) 9.93664 

 
We present complexity plots for these transforms in Fig. 6.  
 
 



 
 

 
 

 
Fig 7. Complexity plots for transforms of suggested progressions of sizes. 

 
 

 
Fig. 8. Complexity vs. coding gain plots of transforms of suggested progressions. 

 
In Fig. 6, we use blue line to show lowest complexity boundary attainable by scaled transforms and yellow line – to 
show complexity boundary attainable by non-scaled transforms. As expected, the scaled transforms turn out to be 
considerably less complex. 

The transforms that form these boundaries have the following sizes: 
- non-scaled:  N=2,3,4,5,6,9,15,27,30,45,54,60 
- scaled:         N=2,3,4,6,8,12,18,24,30,36,60 



 
 

 
 

Using these numbers we can suggest several candidate progressions of transform sizes: 
- 5*3^k = 5,15,45,…  -- subset of best for non-scaled transforms; 
- 3^k = 3,9,27,…        -- subset of best for non-scaled transforms; 
- 3*2^k =3,6,12,24… -- subset of best scaled transforms, and  
- 2^k= 2,4,8,16,…      -- standard dyadic progression. 

Such progressions are important for enabling image and video codecs to switch between transforms of different sizes, 
therefore adapting to statistics in images. Current standards, such as MPEG-4 AVC /H.264 are using dyadic progression 
for their transform sizes. The list above shows few extra choices.  

We plot complexities of transforms along these suggested progressions in Fig. 7.   

Finally, in Fig 8. we provide complexity vs coding gain analysis for transforms such sizes.  

Based on the above plots, it becomes evident that for both scaled and non-scaled design cases, we can find transform 
sequences yielding much better coding gain vs complexity tradeoffs as compared to transforms with dyadic sizes.  

Thus, for scaled transforms, most interest represents the sequence:  
N=3*2^k = 3, 6, 12, 24, 48. 

For non-scaled designs, most consistent gains can be observed for transforms with sizes: 
N=5*3^k = 5, 15, 45. 

Other sequences, such as  
N=3^k = 3, 9, 27, 

or  
N=15*2^k = 15, 30, 60 

migh also be of interest in non-scaled design cases.  

The largest gap in coding gain at about same complexity can be observed between 8-point and 15-point non-scaled 
transforms: from 8.646 to 9.413 dB, which is 0.767 dB difference. 

For scaled transforms, most dramatic jump is observed between 4- and 6-point transforms: from 7.57 to 8.407 dB, 
producing 0.837dB difference, although 6-point transforms are about 15% more complex. 
 
Examples of specific transforms corresponding to our complexity estimates can be found in Appendix B. Techniques 
that we’ve utilized in deriving them are reviewed in Appendix A. 

5. CONCLUSIONS 
We have reviewed current transforms used in image and video coding and analyzed complexity – performance tradeoffs 
achievable by DCT-II transforms of sizes in the range 2—64. Our complexity estimates assumed reasonable costs of 
mapping into integer arithmetic, and were derived for both scaled and non-scaled IDCT designs.  

Our analysis indicates that transforms of certain non-dyadic sizes can offer significantly better performance tradeoffs 
that ones currently achievable with 4, 8, and 16-point transforms.  
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APPENDIX A: FACTORIZATION TOOLS AND TECHNIQUES USED IN THIS WORK 
A.0  Notation 
Let { }  be an input real-valued sequence.  , 0,1,...,nx n N= 1−
In what follows, we will be dealing with the following transforms: 

- DCT-II and its inverse: 
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where ( ) 1/ 2kλ = , if  0, otherwise 1.k =
- DCT-III and its inverse: 
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where ( ) 1/ 2kλ = , if  0, otherwise 1.k =
- DCT-IV and its inverse: 
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For further convenience, we omit normalization factors ( 2 / N  and ( )kλ ) and define matrices:  

( )2 1
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−  

representing coefficients of DFT, DCT-II, DCT-III, and DCT-IV transforms correspondingly.  
 



 
 

 
 

A.1  Connection between DCT-II, DCT-III, and DCT-IV 
We immediately notice that DCT-III is simply an inverse (transpose) of DCT-II:  
 ( ) ( ) 1TIII II II

N N NC C C
−

= =  (A.1) 
and that DCT-IV is involutory (self-inverse, self-transpose): 
 ( ) ( ) 1TIV IV IV

N N NC C C
−

= = . (A.2) 
 
Additionally, as it was shown by S.C. Chan, and K.L.Ho25, as well as C.W.Kok26, DCT-IV can be reduced to DCT-II by 
using the following transformation: 
  (A.3) IV II

N N NC R C D= N

where NR  is a matrix of recursive subtractions: 
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1 1 1
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= ⎜
− −⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟− −⎝ ⎠

⎟  (A.4) 

and  is a diagonal matrix of factors: ND

 ( ) ( ) ( )( )( )13
4 4 4diag 2cos , 2cos , ..., 2cos N

N N N ND ππ π += . (A.5) 

We show flowgraph of this mapping in Figure A.1.  
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Fig. A.1. DCT-IV via DCT-II computation. 

 
We note that if full DCT-IV and DCT-II are used (instead of core transforms with omitted normalization factors), then a 
factor 1 /  in this diagram will need to be replaced by 2 1/ 2 . 
 
From this decomposition it follows that DCT-IV of size N has at most the same complexity as DCT-II plus N 
multiplications, N-1 additions, and 1 multiplication by factor 1 /  (or 2 1/ 2 ).  
 
A.2 Split of DCT-II  into half-sized DCT-II and DCT-IV 
It is well known that even-sized DCT-II matrix (with omitted normalization factors) can be factored into a product 
containing direct sum of smaller DCT-II and DCT-IV matrices as follows2,3: 
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Where PN  is a permutation matrix producing reordering: 
2 / 2 2 1, , 0,1,..., / 2 1,i i N i ix x x x i N+ +′ ′= = = −  

and where IN/2 and JN/2 denote N/2× N/2 identity and order reversal matrices correspondingly. 

The decomposition (1) is of fundamental importance, and it was the basis for many pioneering works on fast DCT-II 
algorithms, including factorization of Chen-Smith-Fralick, algorithms of Wang, and others2. 

A.3 Working with DCT-II of dyadic sizes 
This is the most studied class of transforms, for which we simply use existing algorithms2,3. 

The theoretical estimates of minimum necessary number of multiplications by irrational factors (multiplicative 
complexity) necessary to compute such transforms are given in22,23: 

1(2 ) 2 2;r r rμ += − −  
The paper by Feig and Winograd23 also studies multiplicative complexity of scaled dyadic-sized DCT-II, but they only 
derive upper bound:  

( )1 3
(2 ) 2 2;

2
r r r r

μ + +
≤ − −  

Same paper also includes lower bound (which, actually is valid for any size N): 
( )( ) ;N Nμ μ≥ − N
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A.4 Decimation of DCT-II of even sizes 
A combination of factorization (6) with representation of DCT-IV (3) yields the following recursive process for 
computing DCT-II or even sizes: 

 . (A.7) /2 / 2/2
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This algorithm was first derived by C.W. Kok26, and it is was shown to be more efficient than other known DCT-II 
decimation techniques in terms of multiplication complexity26.  

We show flow-graph of 10-point DCT-II split using C.W.Kok’s algorithm in Figure A.2. 

 
Fig A.2. Decimation of DCT-II using C.W.Kok’s algorithm. 

It can be easily shown, that given an N-point DCT-II with total complexity of 
sam γβα ++  

where m- denotes multiplications, a – additions, and s - shifts, this algorithm produces a transform of size 2N with 
complexity: 

( ) ( ) ( )saNmN 121322 ++−+++ γβα . 

We note that for transforms of dyadic sizes there are many other decimation techniques2,3, but this particular one is more 
general, as it allows decimation of DCT-II with any even (not necessarily dyadic) sizes.  



 
 

 
 

A.5 Factorization of scaled DCT-II of even sizes 
By involutary property of DCT-IV we can rewrite (A.3) as: 
 ( ) ( )T TIV II II T III T

N N N N N N N N NC R C D D C R D C R= = = N

⎟

 (A.11) 
Next, (following same argument as in our derivation of C.W. Kok’s algorithm) we substitute the DCT-IV block in 
factorization (A.6) with formula (A.11).  

This leads us to the following alternative decimation technique: 
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One important distinction of this modification is that all factors represented by matrix DN/2 are now moved in the last 
stage of the transform, and can therefore be separated and possibly merged with some other steps (such as quantization, 
or scaling) done after transform in the application. As obvious, such separation reduces complexity of the remaining 
scaled transform. 

A.5.1 Decimation of scaled DCT-II 
In general, by scaled DCT-II transform we will understand factorization: 
 II

N N NC = Π Δ II
NC . (A.13) 

where is a matrix defining reordering of coefficients, NΠ NΔ is a diagonal matrix of scale factors, and II
NC  is a matrix of 

the remaining scaled transform. 
 
With these notations in mind, we can reformulate (A.12) as follows: 
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producing the following algorithm for computing scaled DCT-II transforms: 
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This process can be used to derive scaled transforms of sizes: , where  >= 2.  1 2kN N= 1N
Now, given the complexity estimates for full and scaled DCT-II modules of size N:  

Full DCT-III:             sam γβα ++  
Scaled DCT-II:          m a sδ ε ς+ +  

where m- denotes multiplications, a – additions, and s - shifts,  we can show that complexity of computing the scaled 
DCT-II of size 2N using algorithm (16) is: 
 ( ) ( ) ( )3 1 1m N aα δ β ε γ ς+ + + + − + + + s . (A.17) 
 
A.6 Derivation of factorizations of DCT-II of odd sizes  
In derivation of factorizations of DCT-II of odd sizes we follow several known techniques, such as Heideman mapping 
of DCT-II to DFT20, Winograd short length DFT modules24,35, as well as prime factor algorithms (PFA) and common 
factor algorithms (CFA) for computing real valued FFTs of factorizable lengths30-34. 

In our work we have tried various permutations of these techniques and picked solutions that are least complex. 



 
 

 
 

APPENDIX B: EXAMPLES OF FAST FACTORIZATIONS  
Here we will list a few (particularly interesting from complexity-point of view) examples of transforms that we have 
produced as part of our analysis. 

3-point DCT-II: 
Allows the following factorization: 

1
03

X

1
26

X

1
12

X

0x

1x

2x

2

 
Scaled transform can be implemented by using only 4 additions and 1 shift (multiplication by factor of 2).  

This particular factorization is less complex than one previously reported by Heideman 20, which required 5 additions 
and 1 shift (extra addition due to factor 1.5). 
 
5-point DCT-II: 
Allows the following factorization: 

1
05 X

2
15 X

2
35 X

2
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2
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( )3
10cos π
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( ) 1
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This flowgraph includes 5 multiplications, 12 additions, and 1 shift. We note that this factorization is less complex than 
one previously reported by Heideman 20, which required 13 additions, 5 multiplications, and 1 shift (one extra addition 
due to factor 1.25). 

6-point DCT-II: 
Allows the following scaled factorization: 

1
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1
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2
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2
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( )51
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This transform needs only 1 multiplication 16 additions and 2 shifts. 

This and other scaled transforms of sizes N=3*2^k are obtained by using process described in section A.5.1 in the 
appendix A. 



 
 

 
 

 
9-point DCT: 
Allows the following factorization20: 
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This factorization includes 8 multiplications by factors:  

( )2
2 9cosC π= − , ( )2

7 9sinC π= − ; ( )3 5 3sinC C π= = − ; 

( )4
1 9sinC π= − , ( )4

8 9cosC π= − ;  ( )8
21 9cosC π= − ; ( )8

71 9sinC π= − ; 

as well 34 additions and 2 shifts.  

We note that this transform is actually less complex (by about 16% using our normalized complexity metric) that 8-point 
DCT-II. 
 
15-point DCT: 
Allows the following non-scaled factorization21: 
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This factorization includes 17 factors ( 2 2
5 3; ;π πα β− −= = ): 

[ ] [ ]1 1
1 22 2cos cos 2 1; cos cos 2 ;c cα α α α 3 4 5sin sin 2 ; sin 2 ; sin sin 2 ;c c c= + − = − α α α α α= + = = −  

6 7 1 6 8 2 6 9 3 6 10 4 6 11

12 13 1 12 14 2 12 15 3 12 16 4 12 17 5 12

cos 1; ; ; ; ; ;
sin ; ; ; ; ; ;

c c c c c c c c c c c c c c
c c c c c c c c c c c c c c c c

β
β

= − = = = = =
= = = = − = − = −

5 6c c
 

among which 3 are dyadic rational numbers:  
5 3

1 6 74 2; ;c c c= − = − = 15
8 ;  

This means, that this factorization requires only 14 essential multiplications and 67 additions. 

In terms of normalized average complexity this transform is about as complex, as 8-point DCT-II, while offering extra 
0.767 dB in coding gain. Compared to 16-point DCT-II, this transform is almost two-times less complex. 
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