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ABSTRACT

This paper describes fixed-point design methodologies and several resulting implementations of the Inverse
Discrete Cosine Transform (IDCT) contributed by the authors to MPEG’s work on defining the new 8x8 fixed
point IDCT standard – ISO/IEC 23002-2. The algorithm currently specified in the Final Committee Draft (FCD)
of this standard is also described herein.
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1. INTRODUCTION

The Discrete Cosine Transform (DCT)1 is a fundamental operation used by the vast majority of today’s image and
video compression standards, such as JPEG, MPEG-1, MPEG-2, MPEG-4 (P.2), H.261, H.263, and others 2−.8

Encoders in these standards apply such transforms to each 8x8 block of pixels to produce DCT coefficients,
which are then subject to quantization and encoding. The Inverse Discrete Cosine Transform (IDCT) is used in
both the encoder and decoder to convert DCT coefficients back to the spatial domain.

At the time when the first image and video compression standards were defined, the implementation of DCT
and IDCT algorithms was considered a major technical challenge, and therefore, instead of defining a specific
algorithm for computing it, ITU-T H.261, JPEG, and MPEG standards have included precision specifications that
must be met by IDCT implementations conforming to these standards.9 This decision has allowed manufacturers
to use the best optimized designs for their respective platforms. However, the drawback of this approach is the
impossibility to guarantee exact decoding of MPEG-encoded videos on across different decoder implementations.

In early 2005, prompted by the expiration and withdrawal of a related IDCT precision specification (IEEE
Standard 1180-19909), MPEG has decided to improve its handling of this matter, and produce

• a new precision specification ISO/IEC 23002-1, replacing the IEEE 1180 standard, and harmonizing the
treatment of precision requirements across different MPEG standards,10 and

• a new voluntary standard, ISO/IEC 23002-2, providing specific (deterministically defined) examples of
fixed-point 8x8 IDCT and DCT implementations.

The Call for Proposals11 for the ISO/IEC 23002-2 standard was issued at the August 2005 meeting in
Poznań, Poland, and during several subsequent meetings MPEG has received a number of contributions with
specific algorithm proposals, as well as general optimization techniques, analyses of different factorizations, drift
problem, implementation studies, and other informative documents. Many of the successive submissions have
benefited from earlier ideas contributed to MPEG by other proponents, converging on key design aspects.10 The
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Committee Draft (CD) of this standard, containing a single algorithm was issued at the October 2006 meeting
in Hangzhou, China. The Final Committee Draft (FCD) of this standard was reached at the April 2007 meeting
in San Jose, CA,13 and the Final Draft International Standard (FDIS) is now expected to be issued in October
of 2007.

This paper describes fixed-point design methodologies and several resulting IDCT implementations con-
tributed by the authors to this MPEG project. The algorithm currently specified in the Final Committee
Draft (FCD) of this standard is also described.

Our paper is organized as follows. In Section 2, we provide background information, including definitions
of the DCT and IDCT, examples of their factorizations, and review of some basic techniques used for their
fixed-point implementations. In Section 2, we also explain several ideas that we have proposed for improving
performance of fixed-point designs: introduction of floating factors between sub-transforms, the use of fast
algorithms for computation of products by groups of factors, and techniques for minimizing rounding errors in
algorithms using right shift operations. In Section 3, we show how these techniques were applied to design our
proposed IDCT approximations. Finally, in Section 4, we provide a detailed description of the algorithm in the
FCD of the ISO/IEC 23002-2 standard. Appendices A and B contain supplemental information and proofs of
our claims.

2. BACKGROUND INFORMATION & MAIN IDEAS USED IN THIS WORK

2.1 Definitions

The order-8, one-dimensional (1D) type II1 Discrete Cosine Transform (DCT), and its corresponding Inverse
DCT (IDCT) are defined as follows:
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where cu = 1/
√

2, when u = 0, and cu = 1 otherwise.

The definitions for the two-dimensional (2D) versions of these transforms are:
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where fy x (y, x = 0...7) denote input spatial domain values (for image and video coding – values of pixels or
prediction residuals), and Fv u (u, v = 0...7) denote transform domain values, or transform coefficients. When
used in image or video coding applications, the pixel values are normally assumed to be in the range of [−256, 255],
while the transform coefficients are in the range of [−2048, 2047].

Mathematically, these are linear, orthogonal, and separable transforms. That is, a 2D transform can be
decomposed into a cascade of 1D transforms applied successively to all rows and then to all columns in the
matrix. This property of separability is often exploited by implementors to mitigate the complexity of an entire
2D transform into a much simpler set of 1D operations.



2.2 Precision Requirements for IDCT Implementations in MPEG and ITU-T Standards

As described previously, specifications of MPEG, JPEG, and several ITU-T video coding standards, do not require
IDCTs to be implemented exactly as specified in (4). Rather, they require practical IDCT implementations to
produce integer output values f̃yx that fall within certain specified tolerances from outputs of an ideal IDCT
rounded to the nearest integer:

f̂yx = sign (fyx) b|fyx|+ 1/2c . (5)

The precise specification of these error tolerances, and how they are to be measured for a given IDCT im-
plementation under test, is defined by the MPEG IDCT precision standard: ISO/IEC 23002-1.14 This standard
includes several tests using a pseudo-random input generator originating from the former IEEE Standard 1180-
1990,9 as well as additional tests required by MPEG standards.

A summary of the error metrics defined by the IEEE 1180 | ISO/IEC 23002-1 specification is provided in
Table 1. Here, the variable i = 1, . . . , Q indicates the index of a pseudo random input 8x8 matrix used in a test,
and Q = 10000 (or in some tests, Q = 100000) denotes the total number of sample matrices. The tolerance for
each metric is provided in the last column of this table.

Table 1. The IEEE 1180 | ISO/IEC 23002−1 pseudo-random IDCT test metrics and conditions

Error metric Description Test condition

p = maxy,x,i |f̂ i
yx − f̃ i

yx| Peak pixel error p 6 1

dyx = 1
Q

∑
i f̂ i

yx − f̃ i
yx Pixel mean error maxy,x |dyx| 6 0.015

m = 1
64

∑
y,x dy x Overall mean error |m| 6 0.0015

eyx = 1
Q

∑
i(f̂

i
yx − f̃ i

yx)2 Mean square error maxy,x eyx 6 0.06

n = 1
64

∑
y,x ey x Overall mean square error n 6 0.02

It should be noted that IEEE 1180 | ISO/IEC 23002 error metrics satisfy the following chain of inequalities

max eyx > max |dyx| > |m| ,
max eyx > n (6)

which implies that max eyx or peak mean square error (pmse) metric is the strongest one in this set.

Among the additional (informative) tests provided in the ISO/IEC 23002-1/FPDAM1 specification,15 the
so-called “linearity test”∗ is of notable interest. This test requires the reconstructed pixel values produced by an
IDCT implementation under test f̃yx to be symmetric with respect to the sign reversal of its input coefficients:

f̃yx (−Fvu) = −f̃yx (Fvu) , Fvu =
[

z, v = t , u = s
0, otherwise ,

z = 1, 3, . . . , 527 ,
v, u, t, s = 0, . . . , 7 .

(7)

This test was motivated by the observation that in the decoding of static regions within consecutive video
frames, the decoder will reconstruct small (zero-mean, symmetrically distributed) differences, that will normally
negate each other over time (across the sequence of frames). If the IDCT implementation does not satisfy
this property (7), then the mismatch between IDCT outputs may instead accumulate, eventually producing a
remarkable visible degradation in the quality of the reconstructed video.16,17

2.3 DCT/IDCT Factorizations

Much of the original research for designing fast implementations of DCT transforms was focused on finding DCT
factorizations, resulting in the minimum number of multiplications by irrational factors. Many factorizations
have been derived by utilizing other known fast algorithms, such as the classic Cooley-Tukey FFT algorithm,
or by applying systematic approaches, such as a decimation in time, or a decimation in frequency.1 The formal

∗Considering general definition of linearity f(αx+βy) = αf(x)+βf(y), for some operator f(.), this test only considers
a case when α = 0, and β = −1. Therefore, this is rather a “sign-symmetry test”.



setting of this problem and an upper bound for the multiplicative complexity of transforms of orders 2n can be
found in E. Feig and S. Winograd.20

In one special case of the order-8 two-dimensional DCT/IDCT, the least complex direct 2D factorization
is described by E. Feig and S. Winograd.21 Their implementation requires 96 multiplication and 454 addition
operations for the computation of the complete set of 2D outputs. The same paper further describes an efficient
scaled 8x8 DCT implementation, that requires only 54 multiplication, 462 addition, and 6 shift operations.21

The latter of these transforms is refered to as a scaled transform because all of its outputs must be scaled
(i.e. multiplied by fixed, possibly irrational, constants) so that each output will equate to the relative output
of a nonscaled DCT. In some applications, such as JPEG, and several video coding algorithms, this process of
scaling can be implemented jointly with the process of quantization (by factoring together the scale constants
with the corresponding quantization values), thereby resulting in significant computational savings.

Some of the most efficient and well-known 1D DCT factorizations include the scaled factorization of Y. Arai,
T. Agui and M. Nakajima (AAN),25 (only 5 multiplication and 29 addition operations), and the non-scaled
factorizations of W. Chen, C.H. Smith and S.C. Fralick,23 B.G. Lee,24 M. Vetterli and A. Ligtenberg (VL),26

and C. Loeffler, A. Ligtenberg and G. Moschytz (LLM).27 The VL and LLM algorithms are the least complex
among known non-scaled designs, and require only 11 multiplication and 26 addition operations.

We note that the suitability of each of these factorizations to the design of fixed point IDCT algorithms has
been extensively analyzed in the course of work for the ISO/IEC 23002-2 standard.28–31

2.4 Fixed-Point Approximations

As described previously, implementations of the DCT/IDCT require multiplication operations with irrational
constants (i.e. the cosines). Clever factorizations can only reduce the number of such “essential” multiplications,
but not eliminate them altogether. Hence, in the design of implementations of the DCT/IDCT, one is usually
tasked with finding ways of approximately computing products of these irrational factors by using fixed-point
arithmetic.

One of the most common and practical techniques for converting floating-point to fixed-point values is based
on the approximations of irrational factors αi by dyadic fractions:

αi ≈ ai/2k , (8)

where both ai and k are integers. In this way, multiplication of x by factor αi permits the implementation of a
very simple approximation in integer arithmetic as follows:

xαi ≈ (x ∗ ai) >> k ; (9)

where >> denotes the bit-wise right shift operation.

In some transform designs, right shift operations in approximations (9) can be delayed to later stages of the
implementation, or done at the very end of the transform, but the more complex operations, such as multiplica-
tions for each non-trivial constant αi still need to be performed in the algorithm.

The key variable that affects the precision and complexity of these dyadic rational approximations (8) is the
number of precision bits k. In software designs, this parameter is often constrained by the width of registers
(e.g. 16 or 32) and the consequence of not satisfying such a design constraint can easily result in the doubling
of execution time for the transform. In hardware designs, the parameter k affects the number of gates needed to
implement adders and multipliers. Hence, one of the basic goals in fixed point designs is to minimize the total
number of bits k, while maintaining sufficient accuracy of approximations.

2.5 Improving Precision of Dyadic Rational Approximations

Without placing any specific constraints on values for αi, and assuming that for any given k, the corresponding
values of nominators ai are chosen such that:

∣∣αi − ai/2k
∣∣ = 2−k

∣∣2kαi − ai

∣∣ = 2−k min
z∈Z

∣∣2kαi − z
∣∣ ,



we can conclude that the absolute error of approximations in (8) should be inversely proportional to 2k:
∣∣αi − ai/2k

∣∣ 6 2−k−1 .

That is, each extra bit of precision (i.e. incrementing k), should reduce the error by half.

Nevertheless, it turns out that this rate can be significantly improved if the values α1, . . . , αn that we are
trying to approximate can be simultaneously scaled by some additional parameter ξ.

We claim the following (the proof for which is provided in Appendix A):

Lemma 2.1. Let α1, . . . , αn be a set of n irrational numbers (n > 2). Then, there exist infinitely many n + 2-
tuples a1, . . . , an, k, ξ, with a1, . . . , an ∈ Z, k ∈ N, and ξ ∈ Q, such that

max
{∣∣ξ α1 − a1/2k

∣∣ , . . . ,
∣∣ξαn − an/2k

∣∣} <
n

n + 1
ξ−1/n 2−k(1+1/n) . (10)

In other words, if the algorithm can be altered such that all of its irrational factors α1, . . . , αn can be pre-
scaled by some parameter ξ, then we might be able to find approximations whose absolute error decreases as
fast as 2−k(1+1/n). For example, when n=2, this means 50% higher effectiveness in the usage of bits. For large
sets of factors α1, . . . , αn, however, this gain will be smaller.

These observations suggest that we can significantly improve the precision of a fixed-point IDCT design by
splitting it into a set of smaller blocks (or sub-transforms) with alterable common factors, and then adjust these
factors such that they yield high-accuracy solutions predicted by Lemma 2.1.

2.6 Reducing Complexity of Multiplications

The dyadic approximations shown in (8, 9) already reduce the problem of computing products by irrational con-
stants to multiplications by integers. However, integer multiplications can still be computationally “expensive”
to use on many existing platforms, and in such cases it becomes desirable to find ways to compute these products
without using general purpose multipliers.

To illustrate this idea, consider a multiplication by an irrational factor 1/
√

2, using its 5-bit dyadic approxi-
mation: 23/32. By looking at the binary bit pattern of 23 = 10111 and substituting each “1” with an addition
operation, we can compute a product by 23 as follows:

x ∗ 23 = (x << 4) + (x << 2) + (x << 1) + x .

This approximation requires 3 addition and 3 shift operations. By further noting that the last 3 digits form a
series of “1”s, we can instead use:

x ∗ 23 = (x << 4) + (x << 3)− x . (11)

which reduces the complexity to just 2 shift and 2 addition operations.

In engineering literature, the sequences of operations “+” associated with isolated digits “1”, or “+” and
“-” associated with beginnings and ends of runs “1 . . . 1” are commonly referred to as a “Canonical Signed
Digit” (CSD) decomposition.34 This is a well known and frequently used tool in the design of multiplierless
circuits.38 However, CSD decompositions do not always produce results with the lowest numbers of operations.
For example, considering an 8-bit approximation of the same factor 1/

√
2 ≈ 181/256 = 10110101, we find that

its CSD decomposition:

x ∗ 181 = (x << 7) + (x << 5) + (x << 4) + (x << 2) + x ,

needs 4 addition and 4 shift operations. But, by rearranging the computations and reusing intermediate results,
a more efficient algorithm can be constructed:

x2 = x + (x << 2); // 101
x3 = x2 + (x << 4); // 10100
x4 = x3 + (x2 << 5); // 10110101 = x ∗ 181



x*23/32
(x>>1) + (x>>2) - (x>>5)
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Figure 1. Errors in multiplierless implementations of a product by 23/32.

This approximation requires only 3 addition and 3 shift operations.

An even more dramatic reduction in complexity can be achieved by performing joint factorization of simul-
taneous products by multiple integer constants. For example, consider the task of computing products by two
constants: 99 = 1100011 and 239 = 11101111. The use of CSD decompositions

x ∗ 99 = (x << 6) + (x << 5) + (x << 1) + x;
x ∗ 239 = (x << 8)− (x << 4)− x;

results in a total complexity of 5 addition and 5 shift operations. At the same time, by using a joint factorization
of these two products, the same task can be simplified by the following implementation:

x2 = x + (x << 5); // 100001
x3 = x2 << 2; // 10000100
x4 = x3− x2; // 1100011 = x ∗ 99
x5 = x3 + x4 + (x << 3); // 11101111 = x ∗ 239

which needs only 4 addition and 3 shift operations.

In the context of the IDCT design, such algorithms can be used for simultaneous computation of products
by pairs of factors in transform butterflies. Moreover, since in each butterfly there are typically two variables
that need to be multiplied by the same factors, such computations can easily be done in parallel.

In passing, we should note that finding optimal (i.e. with fewest numbers of additions and/or shifts) al-
gorithms for computing multiplications by integer constants has been an area of active and fruitful research
during the last few decades33−40 . It has been established that this problem is NP-complete,36 and numerous
fast heuristic algorithms have been proposed for solving it approximately.34,37,39,40

2.7 Minimizing Errors in Multiplierless Algorithms using Right Shifts
Another family of techniques for computation of products by dyadic fractions (8) can be derived by allowing the
use of right shifts as elementary operations.

For example, considering a factor 1/
√

2 ≈ 23/32 = 0.10111, and using right shift and addition operations
according to its CSD decomposition, we obtain†:

x ∗ 23/32 ∼ (x >> 1) + (x >> 2)− (x >> 5). (12)

†Hereafter, by writing a(x) ∼ b(x) for some functions a(.) and b(.), we imply that there exists a constant δ > 0, such
that for all x: |a(x)− b(x)| 6 δ.



or (by further noting that 1/2 + 1/4 = 1− 1/4):

x ∗ 23/32 ∼ x− (x >> 2)− (x >> 5). (13)

Yet another (although, somewhat less obvious) way of computing product by the same factor is:

x ∗ 23/32 ∼ x− ((x + (x >> 4)) >> 2) + ((−x) >> 6) . (14)

We present plots of values produced by these algorithms in Figure 1. It can be noted that they all compute
values that approximate products by fraction 23/32, however, the errors in each of these approximations are
different. For example, the algorithm (13) produces all positive errors, with a maximum magnitude of 55/32.
The algorithm (12) has more balanced errors, with the magnitude of oscillations within ±65/64. Finally, the
algorithm (14) produces perfectly sign-symmetric errors with oscillations in ±7/8.

The sign-symmetry property of an algorithm Aai,b(x) Ã xai/2b means that for any (x ∈ Z):

Aai,b(−x) = −Aai,b(x) , . (15)

It can be shown that sign-symmetry also implies that for any such algorithm with Aai,b(0) = 0, and any N :

N∑

x=−N

[
Aai,b(x)− x

ai

b

]
= 0 , (16)

that is, zero-mean error for any symmetric range of input values.

This property is very important in the design of signal processing algorithms, as it minimizes the probability
that rounding errors introduced by fixed-point approximations will accumulate. Below we will establish the
existence of right-shift-based sign-symmetric algorithms for computing products by dyadic fractions and provide
upper bounds for their complexity.

Given a set of dyadic fractions a1/2b, . . . , am/2b, we define an algorithm

Aai,...,am,b(x) Ã
(
xa1/2b, . . . , xam/2b

)
(17)

as the following sequence of steps:
x1, x2, . . . , xt , (18)

where x1 := x, and where subsequent values xk (k = 2, . . . , t) are produced by using one of the following
elementary operations:

xk :=




xi >> sk; 1 6 i < k, sk > 1; or
−xi; 1 6 i < k; or
xi + xj ; 1 6 i, j < k; or
xi − xj ; 1 6 i, j < k, i 6= j.

(19)

The algorithm terminates when there exists indices j1, . . . , jm 6 t, such that:

xj1 ∼ x ∗ a1/2b, . . . , xjm ∼ x ∗ am/2b . (20)

We state the following (the proofs for which are provided in Appendix B):

Theorem 2.2. For any m, b ∈ N and ai, . . . , am ∈ Z, there exist algorithms Aai,...,am,b (17-20), which are
sign-symmetric. That is, for any x ∈ Z: Aai,...,am,b(−x) = −Aai,...,am,b(x).

Theorem 2.3. The lowest possible number of shifts in algorithms (17-20) satisfying the sign-symmetry property
is at most twice the lowest possible number of shifts in algorithms without this property.

Theorem 2.4. The lowest possible total number of instructions in algorithms (17-20) satisfying the sign-
symmetry property is at most four times the lowest possible total number of instructions in algorithms without
this property.
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Figure 2. Fixed-point 8x8 IDCT architecture.
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Figure 3. Loeffler-Ligtenberg-Moschytz IDCT factorization (left), and its generalized scaled form (right). Parameters (ξ, ζ)
represent additional “floating factors” that we use for finding efficient fixed-point approximations.

We should point out that these are very simple and rather coarse complexity bounds, and that in many cases,
the complexity overhead for achieving sign-symmetry is not that high. Moreover, when complexity considerations
are paramount, one can pick algorithms that are sign-symmetric for most, but not all values of x in the expected
range of this variable. In many cases, such “almost symmetric” algorithms can also be the least complex for a
given set of factors.

In the design of our IDCTs we have used an exhaustive enumeration process for searching for the best
algorithms (17-20) with symmetric (or at least well-balanced) rounding errors. As additional criteria for selection
of such algorithms, we have used estimates of mean, variance, and magnitude (maximum values) of errors that
they produce. In assessing their complexity, we have counted the numbers of operations, as well as the longest
execution path, and maximum number of intermediate registers needed for computations.

3. DESIGN OF FIXED-POINT APPROXIMATIONS OF THE 8X8 IDCT

The overall architecture used in the design of the proposed fixed-point IDCT algorithms is shown in Figure 2,
which can be characterized by its separable and scaled features. The scaling stage is performed with a single
8x8 matrix that is precomputed by factoring the 1D scale factors for the row transform with the 1D scale factors
for the column transform. The scaling stage is also used to pre-allocate P bits of precision to each of the input
DCT coefficients thereby providing a fixed-point ”mantissa” for use throughout the rest of the transform. Other
key features of this architecture include simplicity, compactness / cache-efficiency, and flexibility of its interface,
by allowing the potential for merging of scaling and quantization logic in video and image codec implementations.

As the underlying basis for scaled 1D transform design, we use a variant of the well-known factorization of
C. Loeffler, A. Ligtenberg, and G.S. Moschytz27 with 3 planar rotations and 2 independent factors γ =

√
2 (see

Figure 3). This choice has been made empirically based on an extensive analysis of fixed-point designs derived
from other known algorithms, including variants of AAN,25 VL,26 and LLM27 factorizations.31

In order to allow efficient rational approximations of constants α, β, δ, ε, η, and θ within the LLM factoriza-
tion, we introduce two floating factors ξ and ζ, and apply them to two sub-groups of these constants as follows
(see also Figure 3, right flowgraph):

ξ : α′ = ξα, β′ = ξβ;
ζ : δ′ = ζδ, ε′ = ζε, η′ = ζη, θ′ = ζθ; (21)



We invert these multiplications by ξ and ζ in the scaling stage by multiplying each input DCT coefficient with
the respective reciprocal of ξ and ζ. That is, we pre-compute a vector of scale factors for use in the scaling stage
prior to the first in the cascade of 1D transforms.

σ = (1, 1/ζ, 1/ξ, γ/ζ, 1, γ/ζ, 1/ξ, 1/ζ)T
. (22)

These factors are subsequently merged into a scaling matrix which is precomputed as follows:

Σ = σ σT 2S =




A B C D A D C B
B E F G B G F E
C F H I C I H F
D G I J D J I G
A B C D A D C B
D G I J D J I G
C F H I C I H F
B E F G B G F E




(23)

where A− J denote unique values in this product:

A = 2S , B =
2S

ζ
, C =

2S

ξ
, D =

γ2S

ζ
, E =

2S

ζ2
, F =

2S

ξζ
, G =

γ2S

ζ2
, H =

2S

ξ2
, I =

γ2S

ξζ
, J =

γ22S

ζ2
,

and S denotes the number of fixed-point precision bits allocated for scaling.

This parameter S is chosen such that it is greater than or equal to the number of bits P for the mantissa of
each input coefficient. This allows scaling of the coefficients Fvu, to be implemented as follows:

F ′vu = (Fvu ∗ Svu) >> (S − P ) , (24)

where Svu ≈ Σvu denote integer approximations of values in matrix of scalefactors (23).

At the end of the last transform in the series of 1D transforms, the P fixed-point mantissa bits (plus 3 extra
bits accumulated during executions of each of the 1D stages‡) are simply shifted out of the transform outputs
by right shift operations:

fyx = f ′yx >> (P + 3) . (25)

To ensure a proper rounding of the computed value in (25), we add a bias of 2P+2 to the values f ′yx prior to
the shifts. This rounding bias is implemented by perturbing the DC coefficient prior to executing the first 1D
transform:

F”00 = F ′00 + 2P+2 .

Using this architecture, the task of finding fixed point IDCT implementations is now reduced to finding sets
of integer approximations of factors

• A,B,C, D,E, F, G, I, J – the coefficients in the matrix of scale factors (23), and

• α′, β′, δ′, ε′, η′, θ′ – the factors inside the 1D transforms

and algorithms for computing products by them. Global parameters that can also be adjusted are:

• P – the number of fixed-point mantissa bits;

• S – the number of bits used to implement the scaling stage such that S > P ;

• k – the number of bits used for the approximations of factors within 1D transforms.
‡The LLM factorization naturally causes all quantities on the output to be multiplied by a factor of 2

√
2.27 This results

in 1.5 bits mantissa expansion during row- and column- passes, and 3 bits accumulated at the end of the 2D transform.



Table 2. Fixed-Point IDCT Approximations Derived by Using our Design Framework.
```````````Details

Algorithm
L16 L1 L0 L2

Z0a
23002-2

Z1 Z4

A 16384 2048 2048 2048 1024 1024 8192
B 15852 1703 2275 2275 1138 867 8037
C 22930 2729 2556 2446 1730 1278 11051
D 22418 2408 3218 3218 1609 1226 11366

2D scale E 15337 1416 2528 2528 1264 734 7885
factors F 22185 2269 2840 2718 1922 1082 10842

G 21690 2002 3575 3574 1788 1038 11151
H 32090 3637 3190 2923 2923 1595 14908
I 31374 3209 4016 3844 2718 1530 15333
J 30675 2832 5056 5055 2528 1468 15770

α′ 519/512 151/128 113/128 113/128 41/128 111/256 6573/16384
β′ 413/2048 15/32 45/256 45/256 99/128 67/64 31737/32768

Transform δ′ 55/64 1 1533/2048 1533/2048 113/128 18981/16384 16379/16384
factors ε′ 147/256 171/256 1/2 1/2 719/4096 59/256 1629/8192

η′ 99/256 13/32 111/256 29/64 1533/2048 16091/16384 27771/32768
θ′ 239/256 251/256 67/64 35/32 1/2 21/32 4639/8192

S 14 11 11 11 10 10 13
Bit- P 3 10 10 10 10 10 13

usage k 11 8 11 11 12 14 15

1D 50a, 20s 44a, 18s 42a, 20s 48a,12s 44a, 20s 48a, 26s 56a, 32s
Complexity 2D 801a, 384s 705a, 352s 673a, 384s 769a, 256s 705a, 384s 769a, 480s 897a, 576s

2D+S 1017a, 624s 901a, 552s 829a, 576s 925a, 448s 865a, 576s 925a, 680s 1125a, 792s

p 1 1 1 1 1 1 1
max eyx 0.022800 0.022600 0.019400 0.019800 0.024800 0.007500 0.001300

Precision n 0.018577 0.017923 0.015397 0.016094 0.017866 0.005384 0.000425
max |dyx| 0.003800 0.006000 0.004000 0.007500 0.004300 0.001800 0.000700
|m| 0.000573 0.000245 0.000425 0.000342 0.000166 0.000153 0.000053

Linearity test fail fail fail fail pass pass pass

Ext. dynamic range test fail fail fail fail pass pass pass

Notably, this list of parameters does not include the values for our “floating factors” – ξ and ζ. The reason for
their exclusion is that these factors are needed only for establishing the relationship between the values of the
factors inside the transform (21) and the values for the scale factors (22). The actual values for ξ and ζ are
absorbed by the rational fractions assigned to each factor.

This design framework has been used for the design of several IDCT approximations submitted to MPEG.30,31

The search for the above parameters and algorithms has been organized such that for each candidate transform
approximation we were able to measure: (a) the IDCT precision in terms of accuracy metrics, and (b) the
number of operations needed for its implementation. This approach allowed us to identify transforms with the
best achievable complexity and precision tradeoffs.

3.1 Examples of IDCT Designs

We summarize the values of parameters and performance characteristics of several algorithms designed using
this framework in Table 2. These algorithms have the following particular features:

L16 – an algorithm passing all normative ISO/IEC 23002-1 precision tests using the lowest achievable number
of mantissa bits: P = 3. This implies that this algorithm is implementable on 16-bit platforms.

L1 – an ISO/IEC 23002-1 compliant IDCT approximation with the lowest achievable number of bits in approx-
imations of transform factors: k = 8.
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Figure 4. Drift performance of our IDCT approximations using sequence “News” (CIF, 300 frames).

L0 – an ISO/IEC 23002-1 compliant IDCT approximation with the lowest achievable number of additions: 42
additions per 1D transform. Since the underlying factorization contains 26 additions + 12 multiplications,
this means that each multiplication in algorithm L0 is implemented by using only 1 + 1

3 additions.

L2 – an ISO/IEC 23002-1 compliant IDCT approximation with the lowest achievable number of shifts (12 shifts
per 1D transform). Since the underlying factorization contains 12 multiplications, this means that each
multiplication in algorithm L2 is implemented by using only 1 shift operation.

Z0a – a higher-accuracy (linearity-test compliant) algorithm, selected for the Final Committee Draft (FCD) of
the ISO/IEC 23002-2 standard.13

Z1 – an algorithm that was originally selected for the Committee Draft (CD) of ISO/IEC 23002-2 standard.12

This algorithm is considerably more complex than the FCD design (Z0a).

Z4 – an ultra-high precision IDCT approximation.

In characterizing IDCT precision, Table 2 lists worst-case values of ISO/IEC 23002-1 metrics, collected over
all normative pseudo-random tests.14 In describing complexity, letters ”a” are used to denote the numbers of
additions and letters ”s” – to denote the numbers of shifts necessary to implement these algorithms. The ”1D”
complexity section provides the numbers of operations necessary to implement each scaled one-dimensional
transform. The ”2D” complexity section shows the total numbers of operations necessary to implement the
scaled 2D transform. Finally, the ”2D+S” complexity section shows the total numbers of operations necessary to
implement the complete 2D IDCT transform, including scaling (assuming that all input coefficients are non-zero).

The collection of algorithms L16, L0, L1, and L2 illustrates extremes that can be reached if the goal is to
simply pass the basic set of precision requirements for IDCT implementations in MPEG standards. Algorithms
Z0a, Z1, and Z4 strive to go beyond this basic goal and have some nice additional properties. For example, they
all pass the linearity test,16,17 pass extended dynamic range tests,15 and perform better in so-called IDCT-drift
tests described in the next section.

3.2 Drift Performance Analysis

The IEEE 1180 | ISO/IEC 23002-1 tests define mandatory requirements for IDCT implementations in MPEG
and ITU-T video coding standards. However, passing them does not always guarantee high quality of the
decoded video, particularly in situations with low quantization noise and long runs of predicted (P-type) frames
or macroblocks.42 This is why, in evaluating an IDCT design, it is important to use additional tests, such as
those measuring drift (difference between reconstructed video frames in encoder and decoder) caused by the use
of this approximate IDCT design in the decoder.



In order to measure the drift performance of our IDCTs we have used reference software encoders (employing
floating-point DCTs and IDCTs) of H.263, MPEG-2, and MPEG-4 P2 standards. In order to emphasize IDCT
drift effects, we have also:

• forced all frames after the first one to be P-frames;

• disabled Intra-macroblock refreshes;

• forced QP = 1 (quant scale = 1, and w[i, j] = 16 in MPEG 2,4) for all frames;

In the decoder we have used our IDCT approximations, and for comparison, we have also run tests for the
following existing IDCT implementations:

• MPEG-2 TM5 IDCT - fixed-point implementation included in MPEG-2 reference software,43

• XVID IDCT - a high-accuracy fixed-point implementation of IDCT in XVID (MPEG-4 P2) codec,44 and

• H.263 Annex W IDCT - a 16-bit IDCT algorithm specified in Annex W of ITU-T Recommendation H.263.7

The results of our tests for sequence “News”, using H.263 and MPEG-2 codecs, are shown in Figure 4.
It can be observed, that the high-precision algorithm Z4 has virtually no drift. Then algorithms Z1 and Z0a fol-
low with their worst case accumulated drift contained approximately within 0.5dB in H.263 tests, and within 2dB
in MPEG-2 tests. Algorithms L0, L2, L1, then follow with their worst case drift being slightly worse (approxi-
mately 0.625dB in H.263 and 2.25dB in MPEG-2 tests). The rest of the algorithms, however, perform much worse.

The MPEG-2 TM5 and XVID implementations show approximately 3dB drift in H.263 test, and almost 12dB
drift in the MPEG-2 environment. Even worse is the drift behavior of the 16-bit algorithms in our tests L16 and
H.263 Annex W: they both show approximately 4dB drift in H.263 test, and 18-20dB drift in the MPEG-2 test.

These results illustrate that IDCT drift performance can be significantly affected by the choice of the fixed-
point architecture, and its parameters. In particular, in testing numerous implementations produced using our
scaled, LLM-based framework, we have observed that drift performance is most significantly affected by our
“mantissa” parameter P . For the majority of algorithms: L0, L1, L2, Z0a, and Z1, reducing the mantissa by 2, 3,
sometimes even by 4 bits had almost no effect on most of the IEEE 1180 | ISO/IEC 23002-1 precision metrics,
and yet, each such bit had a major effect (about 1-2dB per bit difference) in drift tests. The algorithm L16 is
an extreme example of such a mantissa reduction process (leaving only P = 3), and it is obviously unacceptable
in terms of drift performance. For this reason, we have retained at least P = 10 bits of mantissa in the design
of most of our algorithms proposed to MPEG.

4. THE ISO/IEC 23002-2 FCD FIXED POINT IDCT ALGORITHM

The overall architecture and 1D factorization flowgraph used by ISO/IEC 23002-2 FCD algorithm are depicted
in Figure 2 and Figure 3 correspondingly. All integer factors and parameters used in this algorithm are listed in
Table 2 under the column “23002-2”.

This transform allocates P = 10 bits for the fixed-point mantissa, and uses the same number of bits for
specifying the scale factors S = 10. This cancels out right shifts in the processing of input coefficients (24), and
makes the scaling stage of this transform particularly simple:

F ′vu = Fvu ∗ Svu , v, u = 0, . . . , 7 , (26)
F ′′00 = F ′00 + 212 , (27)

where Fvu are input coefficients, and the DC-term adjustment (27) is done to ensure proper rounding at the end
of the transform:

fyx = f ′yx >> 13 , y, x = 0, . . . , 7 .



Scaling, rounding and righ-shifting of transform
coefficients:

Fvu = (F’vu* Svu + 2P+S-1 -1 + sgn(F’vu)) >> (P+S);

9 12
1D row 

transforms

12+P
1D column
transforms

Left shifts
fyx << P-3;

6+P 9+P

Figure 5. ISO/IEC 23002-2 FDCT architecture.
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Figure 6. Factorization employed in ISO/IEC 23002-2 FDCT design.

The maximum total number of bits needed by all variables in this transform is 26 bits, which assumes full
12-bit dynamic range of reconstructed pixel values, which is sufficient to cover even extreme cases of quantization
noise expansion, as described in 41 .

There are three groups of rational dyadic factors processed by this algorithm (see Figure 3, and Table. 2):

• α′ = 41/128 and β′ = 99/128 – in the butterfly with coefficients X2 and X6,

• δ′ = 113/128 and ε′ = 719/4096 – in the butterfly with coefficients X3 and X5, and

• η′ = 1533/2048 and θ′ = 1/2 – in the butterfly with coefficients X1 and X7.

The computation of products by these factors is performed as follows:

x2 = x + (x >> 5); // 1.00001
x3 = x2 >> 2; // 0.0100001
x4 = x3 + (x >> 4); // 0.0101001 ∼ x ∗ 41/128 = x ∗ α′

x5 = x2− x3; // 0.1100011 ∼ x ∗ 99/128 = x ∗ β′

x2 = (x >> 3)− (x >> 7); // 0.0001111
x3 = x2− (x >> 11); // 0.00011101111
x4 = x2 + (x3 >> 1); // 0.001011001111 ∼ x ∗ 719/4096 = x ∗ ε′

x5 = x− x2; // 0.1110001 ∼ x ∗ 113/256 = x ∗ δ′

x2 = (x >> 9)− x; // −0.111111111
x3 = x >> 1; // 0.1 ∼ x/2 = x ∗ θ′

x4 = (x2 >> 2)− x2; // 0.10111111101 ∼ x ∗ 1533/2046 = x ∗ η′

The combined complexity of all these operations is only 9 addition and 10 shift operations. Therefore, the average
complexity for computing a single multiplication in this algorithm is only 9/6 = 1.5 addition and 10/6 ≈ 1.66
shift operations. In comparing this with traditional fixed point-point implementation of products by factors:

x ∗ η′ ∼ (x ∗ 1533 + 1024) >> 11

which includes an addition (for proper rounding) and a shift, we conclude that the effective cost of each integer
multiplication in ISO/IEC 23002-2 FCD algorithm is only 0.5 addition + 0.66 shift operations.



The total complexity of computing each scaled 1D transform in this algorithm is 44 addition and 20 shift
operations. The description of a complete 1D transform in C programming language requires only 50 lines.13

Extra C-code needed to describe the full 2D version takes only 20 lines.

The scaling of transform coefficients can be done either outside of the transform, e.g. in the quantization
stage, thereby taking advantage of the sparseness of the input matrix of coefficients, or inside the transform, by
executing multiplications (26).

This algorithm passes all normative ISO/IEC 23002-1 precision tests,14 as well as many additional tests that
have been created in the process of evaluating fixed point designs in MPEG. These additional tests include
MPEG-2 and MPEG-4, and T.83 (JPEG) conformance tests, drift tests with H.263, MPEG-2, and MPEG-4
encoders and decoders, as well as linearity test, and extended dynamic range tests.15

4.1 ISO/IEC 23002-2 FCD FDCT Design

The design of the corresponding fixed-point forward ISO/IEC 23002-2 DCT is fully symmetric relative to the
IDCT design. Its overall architecture and 1D factorization are presented in Figure 5 and Figure 6 correspondingly.
All integer factors and algorithms for computing products in this FDCT design are exactly the same as in the
IDCT, with the only difference being simply the order in which they are executed.

The two elements in the FDCT design that are implemented differently when compared to the IDCT design
are: the reservation of mantissa bits and scaling. The allocation of mantissa bits is done at the very beginning
of the FDCT transform as follows:

f ′yx = fyx << 7 , y, x = 0, . . . , 7 , (28)

and the scaling is done at the very end, by using

Fvu =
(
F ′vu ∗ Svu + 219 − 1 + sgn(F ′vu)

)
>> 20 , v, u = 0, . . . , 7 , (29)

where

sgn(x) =
[

0, if x > 0
1, if x < 0 . (30)

The use of the term (30) in rounding (29) assures that FDCT scaling is done in a sign-symmetric fashion, with
a slightly wider deadzone around 0.

We note that the scaled architecture of ISO/IEC FDCT design makes it also possible to combine the fi-
nal scaling stage (29-30) with the quantization process in video or image encoders, thereby enabling further
complexity reductions.

5. CONCLUSIONS

In this paper we have described our proposed fixed-point IDCT design methodologies and several resulting
algorithms achieving different precision/complexity characteristics. We have explained choices of the parameters
in such designs, and their connection to IDCT precision and drift performance.

The fixed-point 8x8 IDCT and DCT algorithms adopted in ISO/IEC 23002-2 FCD standard are also described.
Their architecture has benefited from the ideas contributed to the MPEG standardization process by multiple
proponents and yielded a remarkably efficient implementation, surpassing all IEEE 1180 | ISO/IEC 23002-2
precision requirements, with low implementation complexity (requiring only 44 addition and 20 shift operations
per scaled 1D transform), and performing very well in linearity, extended dynamic range, and IDCT drift tests.
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APPENDIX A. SOME FACTS FROM DIOPHANTINE APPROXIMATION THEORY
AND PROOF OF LEMMA 2.1

Let θ be a real number, and let us try to approximate it by a rational fraction

θ ≈ p/q.

Here, p and q are integers and, without loss of generality, it can be assumed that q > 0.

Given a fixed q, it can be noted that the precision of best approximation p/q satisfies:

|θ − p/q| = q−1 |qθ − p| = q−1 min
z∈Z

|qθ − z| = q−1 ‖qθ‖ ,



where ‖θ‖ denotes the distance of θ to the nearest integer. Based on the above, it appears that the magnitude
of error should decrease inverse proportional to q.

Nevertheless such approximations can be much more precise. We quote the following result from [32, p. 11,
Theorem V] (in this context, irrational numbers p, q are called ”equivalent” if p = rq+s

uq+v , where r, s, u, v are
integers such that rv − us = ±1).

Theorem A.1. Let θ be irrational. Then there are infinitely many q such that

q ‖qθ‖ < 5−1/2.

If θ is equivalent to 1
2

(
5−1/2 − 1

)
then the constant 5−1/2 cannot be replaced by any smaller constant. If θ is not

equivalent to 1
2

(
5−1/2 − 1

)
, then there are infinitely many q such that:

q ‖qθ‖ < 2−3/2.

Even more notable is the result concerning the achievable precision of simultaneous approximations of irra-
tional numbers θ1, . . . , θn by fractions p1/q, . . . , pn/q, with common denominator q (see [32, p. 14, Theorem III]):

Theorem A.2. There are infinitely many integers q such that

q1/n max {‖q θ1‖ , . . . , ‖q θn‖} <
n

n + 1
.

This means that there exist sets of integers (p1, . . . , pn, q) such that:

max {|θ1 − p1/q| , . . . , |θn − pn/q|} <
n

n + 1
q−1−1/n .

It can be seen that our Lemma 2.1 is a simple consequence of the above fact, where we additionally introduce
parameter k ∈ N, and set ξ := q 2−k. That is, by multiplying both sides of the last formula by ξ we obtain:

max
{∣∣ξ θ1 − p1/2k

∣∣ , . . . ,
∣∣ξθn − pn/2k

∣∣} <
n

n + 1
ξ−1/n 2−k(1+1/n) .

APPENDIX B. SIGN-SYMMETRIC RIGHT SHIFT OPERATOR AND PROOFS OF
THEOREMS 2.2-2.4

For the purpose of our analysis we will need to introduce the following operation.

Definition B.1. The Sign-Symmetric Right Shift (SSRS) x
sym
>> b of an integer variable x by b > 1 bits is

computed as follows:
x

sym
>> b := (x >> (b + 1))− ((−x) >> (b + 1)) , (31)

where >> denotes the ordinary (arithmetic) right shift operation.

Based on its definition, it is easy to see that

(−x)
sym
>> b = −

(
x

sym
>> b

)
, (32)

which implies that it satisfies the sign-symmetry property.

The proof of Theorem 2.2 follows by construction: we take any existing non-sign symmetric algorithm, and
replace all its right shifts with SSRS operators. The complexity of the SSRS operator is 2 shifts, 1 addition, and
1 negation. The total complexity is 4 operations. Theorems 2.3 and 2.4 follow.


