
The authors are solely responsible for the content of this technical presentation. The technical presentation does not necessarily reflect the
official position of the Society of Motion Picture and Television Engineers (SMPTE), and its printing and distribution does not constitute an
endorsement of views which may be expressed. This technical presentation is subject to a formal peer-review process by the SMPTE Board
of Editors, upon completion of the conference. Citation of this work should state that it is a SMPTE meeting paper. EXAMPLE: Author's Last
Name, Initials. 2020. Title of Presentation, Meeting name and location.: SMPTE. For information about securing permission to reprint or
reproduce a technical presentation, please contact SMPTE at jwelch@smpte.org or 914-761-1100 (445 Hamilton Ave., White Plains, NY
10601).

© 2023 Society of Motion Picture & Television Engineers® (SMPTE®)

Simplifying Multi-CDN Delivery with HLS / DASH
Content Steering

Yuriy Reznik, Adam Waldron
Brightcove Inc, Boston, MA, USA.

Guillem Cabrera
Brightcove UK Ltd, London, UK.

Written for presentation at the
SMPTE 2023 Media and Technology Summitt

Abstract. Content Steering is a new feature in both HLS and MPEG DASH standards, enabling
regulating the use of multiple CDNs for streaming. Its key promise is the simplification of the design
of multi-CDN delivery systems. No custom client plugins, DNS redirects, or CMS integrations are
needed to deploy multi-CDN systems. It also addresses the problem of seamless in-session
switching. In this paper, we will review the principles of operation of the HLS / DASH content steering
method and explain how to design practical mass-scalable systems using it. We will also survey the
current state of adoption of this standard by HLS/DASH streaming clients and related open-source
tools and projects.

Keywords: HLS, DASH, Content Steering, Multi-CDN streaming, CDN switching technologies.

© 2023 Society of Motion Picture & Television Engineers® (SMPTE®). 2

Introduction
Since its invention in the mid-1990s, Internet streaming has evolved from a pioneering concept
to a mainstream technology used to deliver videos to viewers today [1-6]. This technology is
exceptionally versatile. It reaches all IP-connected video devices of different screen sizes,
mobility factors, and connection types (TVs, mobiles, PCs, etc.).
The two most widely deployed variants of streaming protocols today are called HTTP Live
Streaming (HLS) [7] and Dynamic Adaptive Streaming over HTTP (DASH) [8]. Both are
international standards. Both use HTTP as the underlying network protocol and employ Content
Delivery Networks (CDNs) for media delivery [9,10]. The underlying principle is simple: the
encoded media content is placed on the origin server first, and then CDN propagates, locally
caches, and delivers it to a geographically dispersed population of viewers. Effectively, the CDN
manages the scale of the delivery.
However, CDNs have some limits. Some may not be available in all relevant regions; some may
have internal capacity limits, and some may not have sufficient caches to support the delivery of
vast collections of videos to the intended audience. CDNs may sometimes also experience
outages or other technical failures, making them inaccessible for some time. Considering such
limits, many large streaming operators increasingly employ multiple CDNs and so-called "CDN
switching" technologies to adjust delivery paths content dynamically for streaming [10-13].

Table 1. Comparison of several existing methods for CDN switching [12,13].
Method Pros Cons

DNS-based This is the simplest of all solutions since
the source video URL remains constant.

Switch delay can be time-consuming,
ranging from 100 seconds to several
minutes in case of CD failures. This can
immensely hamper the user QoE.

On-the-fly
manifest
rewrite

Enables better user experience due to
midstream switching, eliminating the
need for hard refresh during video
playback. No matter the volume of
simultaneous session resets, this method
reduces the chances of a cascade effect
that may hamper the video workflow.

Rewriting the manifest can sometimes
bring about errors. Midstream switching
is not entirely seamless, and it takes time
for the server to understand that a
particular CDN is unavailable.

Server-side

It is a relatively simple CDN switching
method to implement since changes
happen in the server itself, which is
easier for the operator to control.

Page loading may take some time,
adding to delays. Since CDN switching is
based on the collective data from many
clients, it does not necessarily consider
the unique conditions of the actual
clients.

Client-side

QoS data is almost accurate as it is
fetched based on individual clients' local
and real-time performance metrics.
Seamless midstream CDN switching is
possible.

It is a complex procedure to implement
when built in-house due to the code
complexity of the algorithms that requires
detailed planning.

© 2023 Society of Motion Picture & Television Engineers® (SMPTE®). 3

Among existing CDN switching technologies are methods relying on DNS-based switching,
dynamic manifest updates, player-based switching, custom CMS integrations, etc. [9-13].
However, most such solutions are complex and expensive to deploy and operate [9,10]. As
further explained in Table 1, most existing technologies have various technical limitations and
drawbacks. Very few, for example, enable seamless in-stream switching without interrupting the
continuity of the playback. The lack of unified APIs for integrations with such CDN switching
solutions and custom APIs used by each CDN vendor adds to the complexity of deploying and
managing such systems.
The HLS / DASH Content Steering is a new standards-based technology [14-18] that promises
to dramatically simplify the design of multi-CDN streaming systems.
In this paper, we first briefly review the Content Steering technology, explain how it works, and
explain its benefits for practical applications. We will then discuss some challenges arising in
this technology's design and deployment at scale. To address these challenges, we propose an
architecture utilizing edge functions of modern CDNs or edge platforms. The proposed method
is highly scalable, allows short response time, and enables a full spectrum of multi-CDN traffic
optimizations: load balancing, failover protection, COGS- and QOE/QOS-based optimizations.
This method is now fully implemented and forms the basis for an open-source framework,
currently under development and validation study by the Streaming Video Technology Alliance
(SVTA) [13,19]. In this paper, we also discuss the current state of adoption of the Content
Steering technology by the streaming clients and related efforts by the industry fora and open
source community towards enabling it on all platforms.

HLS / DASH Content Steering
HLS / DASH Content Steering is a relatively recent development. First, in April 2021, Apple
proposed a technology called "HLS Content Steering Specification" [14]. Subsequently, in July
2022, DASH-IF produced a similar technology proposal titled "Content Steering for DASH" [16].
The DASH-IF proposal was effectively a subset of HLS content steering, preserving the syntax
of the client-server exchanges. The corresponding changes in both HLS and MPEG DASH
standards have been implemented over the last two years [8,15]. The DASH-IF content steering
specification was also submitted for publication as the ETSI TS 103998 standard [18].
As of today, Content Steering is already supported by the AVplayer framework [20], as well as
HLS.js [21], DASH.js [22], and video.js [23] streaming players. Reference streams and related
open-source tools are also available for the developer community through the efforts of DASH-
IF, CTA WAVE, and SVTA forums [13,19].
To illustrate how the Content Steering mechanism works, in Figure 1, we depict an example
streaming delivery system practicing it. This system employs two media CDNs, denoted CDN1
and CDN2, respectively. The URLs (or base URLs) of such CDNs, also called "pathways," have
assigned names. We use "alpha" and "beta" to refer to CDN 1 and 2, respectively. Both CDNs
can deliver data, but only one is active at each moment. The system also deploys a server-side
control element - the Content Steering server. We show relevant manifest declarations and
exchanges between players and the steering servers in callouts.

© 2023 Society of Motion Picture & Television Engineers® (SMPTE®). 4

Figure 1. DASH delivery system with two media CDNs and content steering servers managing

switching between them.
As shown in Figure 1, the manifest defines the locations of CDNs and a steering server for use
during a streaming session. In DASH, the corresponding syntax includes redundant BaseURL
declarations and a ContentSteering descriptor:

<BaseURL serviceLocation="alpha">https://cdn1.com/</BaseURL>
<BaseURL serviceLocation="beta">https://cdn2.com/</BaseURL>
<ContentSteering defaultServiceLocation=“beta"
queryBeforeStart="true">https://steeringserver.com>
</ContentSteering>

In HLS, the corresponding syntax includes using redundant variant streams pointing to different
CDNs, with PATHWAY-ID annotations and a pointer to the steering server provided by the
#EXT-X-CONTENT-STEERING tag:

#EXTM3U
#EXT-X-CONTENT-STEERING:SERVER-URI="https://steeringserver.com",PATHWAY-ID="beta"
#EXT-X-STREAM-INF:BANDWIDTH=1280000,PATHWAY-ID="alpha"
https://cdn1.com/hi/video.m3u8
#EXT-X-STREAM-INF:BANDWIDTH=1280000,PATHWAY-ID="beta"
https://cdn2.com/hi/video.m3u8

If an HLS manifest includes several variant streams per encoding ladder, the proper practice is
to make all such variant streams available on both CDNs.
In principle, redundant variant streams and BaseURL declarations already existed in earlier
editions of HLS and DASH standards. Most existing clients already recognize them and use
them to implement a basic failover logic for cases of significant network errors [21]. However,
the ContentSteering elements are new, providing specific instructions to the clients about which
CNDs to use.

https://cdn1.com/
https://cdn2.com/
https://steeringserver.com/
https://steeringserver.com/
https://cdn1.com/hi/video.m3u8
https://cdn2.com/hi/video.m3u8

© 2023 Society of Motion Picture & Television Engineers® (SMPTE®). 5

When receiving a manifest with content steering elements present, the new HLS / DASH
streaming players recognize the existence of steering servers and call them during the session.
They issue HTTP GET requests to the steering server URI specified in the manifest. As part of
the request, they may include various additional parameters. The parameters specified as
recommended by both DASH and HLS specifications, are listed in Table 2.

Table 2 – Parameters communicated by HSL/DASH clients to steering servers.

HLS parameter DASH parameter Description
_HLS_pathway_ _DASH_pathway_ ID of the last pathway used by the client

_HLS_throughput_ _DASH_throughput_ Estimated throughput [bits / sec], as observer by the
client in pulling data from the selected CDN

An example of a client's request communicating such parameters to the steering server is
provided below:

GET "https://steeringserver.com?session=abc&_DASH_pathway=beta&_DASH_throughput=145000"

In this example, the client also passes the session ID as a custom parameter in addition to the
pathway and throughput parameters.
In response to receiving such a request, the content streaming server generates a response
indicating the preferred order of the CDNs (or pathways), the time to call the steering server
again (TTL), and the SERVER-URI to use when calling the server next time.
Below, we provide an example of a response that the server can generate:

{
 "VERSION": 1,
 "TTL": 300,
 "RELOAD-URI": "https://steeringserver.com?session=abc"
 "SERVICE-LOCATION-PRIORITY": ["beta", "alpha"]
}

In this example, the server instructs the client to use pathway "beta" with a higher priority for
streaming and then to call the server back in 300 seconds for the next update. The 300 seconds
(5 minutes) TTL is a default response interval recommended by HLS specifications.

Once the client receives the steering server response, it checks if the top CDN specified matches
the one currently used, and if not, it implements the switch.

The above-described syntax of the steering server response and client-server interactions are
the same for HLS and DASH systems, enabling the same server to handle content steering
operations.

Implementing HLS / DASH Content Steering System
Next, we study the implementation aspects of a multi-CDN streaming system employing the
HLS / DASH Content Steering mechanism.

https://steeringserver.com/?params=abc
https://steeringserver.com/?params=abc
https://steeringserver.com/?session=abc

© 2023 Society of Motion Picture & Television Engineers® (SMPTE®). 6

Centralized Server-based Architecture
Figure 2 shows a possible implementation of the HLS/DASH content steering system. In this
design, a single is responsible for all steering decisions. Conceptually, this is the most
straightforward implementation of the system.

Figure 2. Centralized server-based implementation of content steering system.

The objective of the steering server is to direct traffic to each CDN in a way that achieves some
beneficial effect. For example, it may perform failover control, increasing the system's reliability.
Or it may perform CDN load balancing, enabling broader distribution. It may also perform
QOE/QOS- or COGS-type optimizations.

The steering server may receive at least two types of input information. First, to perform QOE or
QOS-based optimizations, it will need to get QOE or QOS data about the system's performance.
The usual source of such information is the analytics engine, which collects data from the
streaming players, origin servers, and CDNs.
The other input that the steering server may receive is a set of business rules associated with
each CDN. Such data, for example, may include contract lengths, traffic- or dollar-level
commits, per-GB edge traffic rates, etc.
Based on all such inputs, the content steering server decides how to direct traffic to achieve the
desired utility (e.g., failover, load distribution, QOE/QOS-, or COGS-based optimization). We
note that such decisions must be made repeatedly, as each client associated with each active
session will call the server back at the TTL interval.

Limitations of the Centralized Server-based Design
We next will note some limitations of a system depicted in Figure 2.
The first one is scalability. Let us assume, for example, that we have an event watched by 6M of
concurrent viewers. Then, with 300 seconds TTL, the steering server must process at least 20K

© 2023 Society of Motion Picture & Television Engineers® (SMPTE®). 7

requests per second. That is a pretty high number! With conventional hardware and some non-
trivial logic required for deriving each steering response, it may easily overload a single server
or a cluster of servers. In other words, the architecture can't be that simple. It will likely need
many servers and appropriate autoscaling and load-balancing logic.
The other issue is the operating cost. With the cloud-based implementation, processing each
steering response involves compute-time and bandwidth-based costs. Such expenses can be
considerable. At least as high as the costs of operating manifest origins, manifest CDNs, and
maybe more.
The related issue is the response delay of the system. Reducing steering server TTL, as we just
noted, goes against the scalability and costs of the system. Hence it will have to be relatively
long, for example, 300 seconds or even longer.
However, such a long TTL dramatically reduces the utility and effectiveness of content steering!
While 300 seconds (5 minutes) may be adequate for essential load balancing and CDN commit
management tasks, it is inadequate for other objectives, such as QOS/QOE optimizations or
rapid enough failover logic. When clients start buffering, directing them to another CDN 5
minutes later is too late!
In other words, we observe that the centralized server implementation of the HLS / DASH
content steering method comes with many fundamental limits.

Distributed, Edge-based Implementation of Content Steering
We next present an alternative implementation of the steering system addressing the above-
described limits. Figure 3 shows the overall diagram of our proposed design.

First, instead of using a single content steering server responsible for all decisions in the
system, the proposed design splits steering operations into two stages:

Figure 3. Edge-based implementation of the content steering system.

© 2023 Society of Motion Picture & Television Engineers® (SMPTE®). 8

● The first stage. Defines the initial preferred CDN order for each new streaming session
and assigns steering servers to such sessions. We call the server (or a cluster of
servers) producing such initial decisions – the steering master.

● The second stage. This stage produces all subsequent CDN steering decisions for each
streaming session at TTL intervals. We use stateless functions and edge computing
platforms to implement all such operations.

The proposed two-stage implementation has several key benefits:
- It becomes massively scalable - as scalable as CDNs / platforms responsible for

executing edge functions;
- it also becomes much more economical to deploy - as bandwidth and per/requests costs

at CDNs or edge platforms are significantly less expensive than egress traffic costs of
cloud platforms

- it also becomes more responsive, allowing lower TTL response times between clients
and the servers.

Reducing response time is crucial for enabling many additional utilities of the system. Thus,
when TTL becomes shorter than the size of the player's buffer (e.g., 10-30 seconds), this
automatically enables QOS and QOE-type optimizations — for example, prevention of buffering
or allowing clients to use higher quality streams. Shorter response times are critical for graceful
failover behavior, disaster recovery, and many other applications.

Regarding possible deployment options, the platforms currently supporting edge processing
include AWS / CloudFront with Lambda @ Edge, Fastly's VCL, Akamai Edge Workers,
CloudFront Functions, and others [9]. With the rollouts of 3GPP MEC-based services [25] and
hybrid ecosystems such as 5G-EMERGE [26], the range of deployment options for such
architecture will likely be even broader.
However, in all cases, for a steering server to be deployable at the edge, it must be reduced to a
simple stateless function. We discuss this design aspect next.

Stateless Implementation of Content Steering Servers
The critical element that enables us to turn the steering server into a stateless function is the
parameter string used for communication between the streaming client and the server. This
string can be specified as part of the SERVER-URI element in the manifest and as part of
RELOAD-URI in the steering server response.
Hence, by encoding an internal state and passing it as a parameter string to the client, the
server can recover it the next time the client calls it. Such a method allows the server to retain
the full context of the session while being invoked as a stateless function on each client's
request. We explain the dynamic of such client-server exchanges in Figure 4.
To pass an edge server an initial state, we encode such a state as part of the SERVER-URI
string in the manifest. The manifest updater module depicted in Figure 3 does this for each new
session.

© 2023 Society of Motion Picture & Television Engineers® (SMPTE®). 9

In our current implementation, the edge server state variables include a few key characteristics
of the encoding profile (minimum and maximum bitrates used by its renditions, media duration),
current position in the stream, currently observed throughput statistics of all CDNs (as specific
to player's region), and the CDN priority list as defined by the steering master. Such state
variables allow our edge servers to perform in-session QOE-type delivery optimizations while
adhering, to the extent possible, to CDN priorities as set by the steering master.
In our implementation, we have also added a mechanism allowing CDN order decisions to be
forced centrally for all edge servers in a particular region or working with some specific CDNs.
Such a mechanism is necessary for testing, manual interventions, disaster recovery efforts, etc.

Distributed Decision Logic
We next discuss the distribution of the decision logic across players, edge servers, and the
steering master server in our system. Figure 5 provides a diagram explaining this split.
First, we notice that streaming clients do all final switches. They follow the standards. They
recognize the presence of all CDNs/pathways as declared in the manifests and the order of
CDNs as provided by the content steering servers. They usually choose the top-priority listed
CDN/pathway for delivery. However, in some cases, the clients may also select an alternative
CDN by picking the next one on the priority list. Usually, this happens in cases of significant
network failures or lack of responses from the default CDN [21]. Effectively, the clients perform
failover control logic.
However, each client only observes statistics for the CDN currently in use. It generally does not
know what happens simultaneously with other CDNs in the system. Such knowledge is
essential for QOS/QOE-type of optimizations. For these reasons, our system uses edge
steering servers for in-session level QOE optimizations. As explained earlier, they receive
performance statistics for all CDNs in the player's region as part of their initial state. Then they
progressively update these statistics based on throughput values reported by the clients. With

Figure 4. Exchanges between clients and steering servers carrying the session-related state in

the parameter string.

© 2023 Society of Motion Picture & Television Engineers® (SMPTE®). 10

short enough TTL times, this becomes sufficient to detect degradation in the performance of the
current CDN and force switch preventing buffering.
The master steering server in our proposed system architecture is responsible for all regional-
or global-level optimizations. These include CDN load-balancing, COGS-based optimizations,
CDN contracts commit-level control, etc. Such decisions don't usually require short TTLs, and
the per-session granularity of CDN assignments is generally adequate. The regional- or global-
level failover actions may also be started at the master server and propagated to edge servers.
With the described distribution of functions, the proposed system architecture can deliver
multiple utilities in multi-CDN traffic management while being highly scalable, responsive, and
simple to deploy and operate.

Open-Source Project in SVTA
The essential elements of the described system – manifest updaters, steering servers, and
testing and deployment scripts are now available as an open-source project within the
Streaming Video Technology Alliance (SVTA) [19]. Figure 6 shows the landing page of this
project in SVTA GitHub.

Figure 5. Distribution of functions in a system with player-, edge-steering servers, and master

server levels of control.

© 2023 Society of Motion Picture & Television Engineers® (SMPTE®). 11

Figure 6. Content Steering at Edge project page in SVTA GitHub.

This implementation supports HLS and DASH protocols and allows several deployment options.
It includes steering servers implemented as standalone servers and edge functions deployable
by AWS Lambda @ Edge. The manifest updaters allow deployments as standalone servers or
as AWS Lambdas. The system currently works with HLS.js [21], DASH.js [22], and video.js [23]
open-source streaming players.
Among functions immediately supported by this open-source project are:

- QOE/QOS optimizations (prevention of buffering)
- Automatic failover functions (switches in cases of failures of either CDNs)
- Manual steering controls (forced changes of CDN priority orders).

All these functions are available from a project demo page, as shown in Figure 7.
When operating this demo, the user can specify the protocol (DASH or HLS), sample content
encoded using this protocol, and the streaming player. For testing the effectiveness of
QOS/QOE and failover functions of the system, the user activates a network proxy /bandwidth
throttling tool. By setting different network conditions for each CDN / pathway, the user can
observe the effects of failover prevention of the QOE optimization functions of this system.

© 2023 Society of Motion Picture & Television Engineers® (SMPTE®). 12

Figure 7. Test/demo page of the edge-based content steering system.

The immediate objective of this project is to provide a reference implementation of the
HLS/DASH Content-Steering-based system and use it for performance study, along with other
CDN solutions currently under investigation by the SVTA alliance [13]. Once fully validated and
tested, this project promises to become a reference framework that would simplify subsequent
developments and deployments of highly scalable practical multi-CDN streaming solutions
based on HLS / DASH content steering.

Conclusions and Future Work
We believe that Content Steering technology is a much-needed addition to HLS and DASH
standards, enabling the efficient design of multi-CDN streaming systems.
In this paper, we have reviewed the principles of operation of this method and explained how to
design practical mass-scalable systems using it. Our proposed design now forms the basis for
an open-source project under development and testing by the SVTA alliance [13,19].

© 2023 Society of Motion Picture & Television Engineers® (SMPTE®). 13

We also noted significant progress already made towards enabling support for this technology
by many existing platforms. For instance, as of now, it is already supported by the AVplayer
framework [20], as well as HLS.js [21], DASH.js [22], and video.js [23] streaming players. The
last 3 are open-source web-players. The work towards supporting it on the Android / ExoPlayer
framework is ongoing [32]. The reference streams for testing this technology are also available
from DASH-IF [31].
Moving forward, we certainly see additional work needed to enable Content Steering on all
devices, including SmartTVs and popular set-top boxes, such as Roku, FireTV, etc. Build-in
support in popular delivery-chain products, such as encoders, packagers, and origin servers,
would also help to make it available to the masses. But with the current momentum, coordinated
efforts in DASH-IF, SVTA, and other forums, and the technical advantages it promises, we have
no doubts that this technology will have a bright future.

References
[1] D. Wu, Y.T. Hou, W. Zhu, Y-Q. Zhang, and JM Peha, "Streaming video over the internet:

approaches and directions," IEEE Trans. CSVT, vol. 11, no. 3, pp. 282-300, 2001.

[2] B. Girod, M. Kalman, Y.J. Liang, and R. Zhang, "Advances in channel-adaptive video
streaming," Wireless Comm. and Mobile Comp., vol. 2, no. 6, pp. 573-584, 2002.

[3] G. J. Conklin, G. S. Greenbaum, K. O. Lillevold, A. F. Lippman, and Y. A. Reznik, "Video
coding for streaming media delivery on the internet," IEEE Trans. CSVT, vol. 11, no. 3, pp.
269-281, 2001.

[4] Bentaleb, B. Taani, A. C. Begen, C. Timmerer, R. Zimmermann, “A Survey on Bitrate
Adaptation Schemes for Streaming Media Over HTTP,” in IEEE Communications Surveys
& Tutorials, vol. 21, no. 1, 2019, pp. 562-585.

[5] Y. A. Reznik, K. O. Lillevold, A. Jagannath, and X. Li. 2021. Towards Understanding of the
Behaviour of Web Streaming. In 2021 Picture Coding Symposium (PCS). 1–5.

[6] Y. Reznik, X. Li, K.O. Lillevold, R. Peck, T. Shutt, and P. Howard, "Optimizing Mass-Scale
Multi-Screen Video Delivery," SMPTE Motion Imaging Journal, vol. 129, no. 3, pp. 26-38,
April 2020.

[7] R. Pantos, and W. May, "HTTP live streaming, RFC 8216,"
https://tools.ietf.org/html/rfc8216, 2017.

[8] ISO/IEC 23009-1:2022, "Information technology - Dynamic adaptive streaming over HTTP
(DASH) - Part 1: Media presentation description and segment formats," October 2022.

[9] Mind Commerce, "CDN Market by Technology, Platform, Application, Service Type,
Customer Type, and Industry Verticals 2021 – 2027", 2021.

[10] EBU TR 068, "CDN Architectures Demystified," EBU, Geneva, June 2022.
https://tech.ebu.ch/publications/tr068

© 2023 Society of Motion Picture & Television Engineers® (SMPTE®). 14

[11] D. Hassoun, "How to Jump-Start Your Multi-CDN Strategy and Deliver Every Time", Oct.
2019: https://www.streamingmedia.com/Articles/ReadArticle.aspx?ArticleID=134765

[12] Muvi blog post: Multi-CDN switching methods: https://www.muvi.com/blogs/multi-cdn-
switching-in-streaming-businesses.html

[13] SVTA investigation of approaches to CDN delivery
https://www.svta.org/2023/01/03/investigating-approaches-to-multi-cdn-delivery

[14] HLS Content Steering Specification (v1.2b1)
https://developer.apple.com/streaming/HLSContentSteeringSpecification.pdf

[15] RFC 8216, Section 7: Content steering https://datatracker.ietf.org/doc/html/draft-pantos-
hls-rfc8216bis#section-7

[16] DASH-IF CTS Version 0.9.0 – https://dashif.org/docs/DASH-IF-CTS-00XX-Content-
Steering-Community-Review.pdf

[17] ETSI TS 103 998, DASH-IF Content Steering, Final Draft, DTS/JTC-117 v0.9.9
https://docbox.etsi.org/BROADCAST/BROADCAST/70-DRAFTS/00117/JTC-
117v099.docx

[18] Y. Reznik, G. Cabrera, R. Zekarias, B. Zhang, B. Panigrahi, N. Barman, S. Hicks, T.
Krofssik, A.Sinclair, and A. Waldron, "Implementing HLS/DASH Content Steering at
Scale," Proc. International Broadcast Convention (IBC 2023), September 15-18, 2023.

[19] Content Steering at Edge, an open-source project: https://github.com/streaming-video-
technology-alliance/content_steering_at_edge (available to SVTA members)

[20] AVFoundation, https://developer.apple.com/av-foundation/

[21] Hls.js player, https://github.com/video-dev/hls.js/

[22] DASH.js player, https://github.com/Dash-Industry-Forum/DASH.js

[23] Video.js player, https://videojs.com/

[24] P. Cluff, "Survive CDN failures with redundant streams", September 2020,
https://www.mux.com/blog/survive-cdn-failures-with-redundant-streams

[25] 3GPP MEC, https://www.3gpp.org/news-events/partner-news/mec

[26] 5G-EMERGE project, https://www.5g-emerge.com/

[27] Brightcove VideoCloud system, https://videocloud.brightcove.com

[28] Blender Foundation, Big Buck Bunny video sequence, https://peach.blender.org/

[29] Brightcove Context Aware Encoding, https://www.brightcove.com/en/products/online-
video-platform/context-aware-encoding/

© 2023 Society of Motion Picture & Television Engineers® (SMPTE®). 15

[30] Charles proxy, https://www.charlesproxy.com/documentation/proxying/throttling/

[31] DASH-IF reference streams for content steering,
https://reference.dashif.org/dash.js/latest/samples/advanced/content-steering.html

[32] Android / ExoPlayer GitHub page, https://github.com/google/ExoPlayer/issues/11203

	Simplifying Multi-CDN Delivery with HLS / DASH Content Steering
	Written for presentation at the
	Keywords: HLS, DASH, Content Steering, Multi-CDN streaming, CDN switching technologies.
	Introduction
	HLS / DASH Content Steering
	Implementing HLS / DASH Content Steering System
	Centralized Server-based Architecture
	Limitations of the Centralized Server-based Design

	Distributed, Edge-based Implementation of Content Steering
	Stateless Implementation of Content Steering Servers
	Distributed Decision Logic

	Open-Source Project in SVTA
	Conclusions and Future Work
	References

