
Optimizing Mass-Scale Multi-Screen Video Delivery

Yuriy Reznik, Xiangbo Li, Karl Lillevold, Robert Peck, Thom Shutt, and Radoslav Marinov
Brightcove, Inc.

Seattle, WA
{yreznik, xli, klillevold, rpeck, tshutt, rmarinov}@brightcove.com

Abstract - We propose a combination of tools and

techniques for improving OTT delivery to devices with

different decoding, rendering, and connection capabilities.

These tools and techniques include: dynamic packaging,

dynamic devices detection, dynamic manifest generation,

rules engine, analytics engine, and context aware encoding

(CAE). We explain how such tools and techniques can be

implemented using current cloud computing and CDN

platforms and tuned to achieve optimal end-to-end

performance, delivering best possible user experience and

minimizing transcoding-, bandwidth- and storage costs.

INTRODUCTION

Over the course of the last 2 decades OTT streaming has

evolved from a pioneering concept to a mainstream

technology used to deliver media content. Important steps in

this evolution included:

● the invention of the concept of adaptive bitrate

(ABR) streaming [1,2],

● the emergence of CDNs and HTTP-based delivery

model are most practical method of mass-scale

delivery,

● the emergence of suitable standard codecs, file

formats and system specifications (e.g. H.264 [3],

HEVC [4], HLS [5], DASH [6], and most recently

CMAF [7],

● consolidation of DRMs to fewer recognized systems

(e.g. FairPlay, Widevine, PlayReady) that are

broadly supported, and

● improvements in client technologies, such as

MSE [8] and EME [9] functions supported by most

popular web browsers.

However, despite all these improvements and

consolidations to fewer choices of codecs, formats, and

DRMs, modern-days OTT media delivery systems still face

fragmentation in ways different client devices support them.

For example, most existing devices can decode H.264,

including streams encoding using H.264 Main and High

profiles. Some newer devices, most notably Apple devices

with iOS 11 or later, can also decode HEVC. However, many

older devices, including Android devices with versions prior

to 6.0, most likely can only play H.264 baseline. Likewise, it

is not a secret that to send streams to Apple devices, one has

to use HLS, while DASH is preferred for Androids and

SmartTVs. Moreover, some older TVs and game consoles can

only play Smooth streaming, and some other legacy devices

that can only play progressive download streams. The support

of different types of DRMs across different devices is also

fragmented, as illustrated in Figure 1.

FIGURE. 1: SUPPORT OF DRMS ACROSS DIFFERENT DEVICES.

Known methods of streaming delivery considering

fragmentation of existing codecs and formats include:

● creation of separate copies of streams, packaged

specifically to different delivery formats (HLS,

DASH, Smooth, etc.) and DRMs (PlayReady,

FairPlay, Widevine, etc.),

● dynamic transmuxing and dynamic encryption of

streams encoded and stored in some intermediate

format to match requirement of final delivery

formats and DRMs,

● creation of separate encoding profiles (and ABR

stacks of streams) using each codec (e.g. H.264,

HEVC, H.264/baseline), and/or

● creation of mixed encoding profiles, where low-

bitrate streams are targeted to legacy devices and

hence encoded using H.264 baseline, while higher

bitrate streams are encoded using H.264 main and

High profiles (see Figure 2).

Naturally, creating many versions of encoded streams for

different codecs, protocols and DRMs dramatically increases

transcoding, storage and CDN costs. It also affects efficiency

FIGURE. 2: TYPICAL ENCODING PROFILES USED FOR HLS STREAMING (SOURCE APPLE TECH NOTE TN2224,2004).

FIGURE 3: HIGH-LEVEL ARCHITECTURE OF CLOUD BASED VIDEO DELIVERY SYSTEM.

of the CDNs, as their edge cache space is limited, and the use

of multiple copies of same content will inevitably increase

cache miss probability. The use of dynamic (or just-in-time)

transmuxing and encryption could, in principle, minimize

storage, transcoding, and CDN costs. However, they require

a whole set of additional system elements to be implemented.

This includes dynamic device detection, dynamic generation

of manifests, and dynamic delivery of final streams over

CDNs, and means for doing all these operations at scale and

sufficiently close to the edge to achieve practically acceptable

delays.

Similarly, the use of separate encoding profiles for

different codecs or codec profiles/level combinations sounds

wasteful. It may create more streams than are actually needed

to enable delivery. The use of mixed encoding profiles is a

better idea, but it is complicated by the fact that some players

may not be able to switch between different codecs (e.g.

H.264 and HEVC), and that depending on the operator or the

region, the distribution of video playback devices and their

codec support capabilities may be very different. Hence

ideally, encoding profiles should be generated customarily,

accounting for the context of each operator or region.

And finally, what also makes video encoding and

delivery challenging, is that video content by itself is highly

variable, rendering static (pre-configured) ABR encoding

profiles suboptimal for some video sequences or over time.

To address this issue, in recent years several techniques have

been proposed based on the concept of dynamic generation of

encoding profiles for each content item. These includes so-

called “per-title” [14], “content-aware” [15], or “context-

aware” [12] encoding techniques. However, in most cases,

such techniques have been developed to work only with a

single codec (e.g. H.264 or HEVC). The use of multiple

codecs and specifics of fragmentation of their support have

not yet been incorporated in problem definition addressed by

these techniques.

Summarizing all of the above, we note that while many

effective techniques and standards for enabling mass-scale

multi-screen video delivery have already been developed,

there are still many areas where additional work can be done,

and where additional improvements could possibly be

obtained. Such areas include improvements in overall

delivery system architecture design, coupling and joint

optimization of different modules (e.g. device detection,

transmuxing, dynamic manifest generation, encoding profile

generation, etc.), and end-to-end system performance

optimizations.

The objective of this paper is to offer some results on the

above-mentioned topics. In the next section, we will describe

our proposed multi-screen delivery system architecture,

highlighting commonly known and some unique elements,

and reasoning behind them. We then focus on explaining tools

developed for end to end optimizations. We next present

examples of system statistics and explain performance gains

that have been achieved. The last section offers concluding

remarks.

ARCHITECTURE OF CLOUD-BASED MULTI-

SCREEN VIDEO DELIVERY SYSTEM

I. System overview

In Figure 3, we present a high-level architecture of the

proposed cloud-based video delivery system. It consists of

several functional blocks, and where all exchanges, as

common for cloud-based systems, are done by means of

RESTful APIs.

For example, an operator can use an API to instruct the

system to ingest the content, transcode it, and then deliver it

using a CDN or several CDNs of his choice.

The transcoding of the content is done in in two steps.

The first step is responsible for generation of an ABR

encoding profile, followed by traditional transcoding process,

producing a set of transcoded streams (or renditions). The

resulting streams along with additional metadata are then

placed on the storage used by the dynamic delivery system.

We note, that at this point, such steams are not yet encrypted

or packaged into final delivery formats (e.g. HLS or DASH

segments). Instead, they are stored in intermediate format

allowing fast transmuxing operations.

The dynamic delivery system is essentially a layer

performing selective transmuxing, encryption, and passage of

final streams to CDNs for the purpose of delivery. It is also

responsible for manifest generation. This module is

implemented as a highly distributed system, allowing such

operations to be performed sufficiently close to the players.

The analytics engine is a system collecting information

from players as well as CDNs for the purpose of system

performance analysis and end-to-end system optimizations.

In next sections we describe operations of elements of

this system during video delivery process.

II. Playback initiation

When dynamic delivery system receives a playback request

for a particular media content, it generates a list of manifest

URLs, representing all possible combinations of supported

delivery protocols, formats, and DRMs. This list of URLs is

subsequently presented to a player. If player recognizes any

of the formats in this list, it then tries to load the

corresponding manifest based on URL provided. Such

manifest, in turn, may or may not be present in the manifest

CDN. If it is absent, which happens the first time a content in

some particular format is requested, this results in CDN cache

miss, bringing control back to dynamic delivery system, and

its device detection and manifest generation modules.

III. Device Detection

The objective of the device detection process is to identify the

type, capabilities and location of a playback device. For such

purposes, the device detector uses user-agent and other fields

in HTTP headers, present at the time manifest is requested.

The list of properties that device detection is trying to

establish is shown in Table 1.

Property Possible values

Device type PC, smartphone, tablet, TV, etc.

OS type / version Android 6.0, iOS 11, etc

Browser type/version Chrome 51, Mozilla 5.0, etc

Geographic region of device Country code

Video codec support H.264 baseline, H.264, HEVC, etc.

Supports codec switching Yes/No

Maximum supported resolution 1080p, 540p, 480p, etc.

Maximum supported bitrate 1.2Mbps, 4Mbps, 10Mbps, etc.

Formats & DRM support HLS v4, PlayReady, etc.

HDR video support Yes/No

TABLE. 1: PROPERTIES THAT DEVICE DETECTION SEEKS TO ESTABLISH.

IV. Manifest generation and rules engine

The primary function of dynamic manifest generation is to

match features and streams specified in the manifest to

capabilities of the receiving device. For example, for a device

that can only decode H.264 baseline – only such renditions

will be retained. On the other hand, if the device can support

HEVC, H.264, DASH, and can also switch across adaptation

sets and codecs – then output can be an MPD with both H.264

and HEVC adaptation sets and supplemental properties

declaring adaptation sets as switchable.

The other function of the manifest generator is to apply

certain additional rules defined by operators. For example,

based on geo location and some other parameters, an operator

may decide to use a different CDN, or limit maximum

resolution, bitrate, etc. The corresponding blocks providing

for such functionality in Figure 3 are rules API and rules

engine.

V. Just-in-time packaging

When manifest is finally received by the player, it starts

retrieving media segments from the CDN. Such media

segments, again, may or may not be present in the CDN cache.

In case of cache misses, the CDN response brings control

back to the dynamic delivery system and its just-in-time

packager. In turn, just-in-time packager retrieves

corresponding segments of the content, transmuxes them to

the required format (e.g. TS or ISOBMFF), and passes them

back to CDN for delivery.

In other words, the segments in all permutations of

formats and DRMs are never generated or stored in a

permanent way on cloud storage. Instead, this system stores

only single copies of content in intermediate formats. This

significantly reduces cloud storage, bandwidth, and

operations costs.

VI. Cascaded CDN architecture

To reduce frequency of at which just-in-time packagers are

invoked the delivery system uses 2-layer CDN architecture.

The first-layer CDN, which interfaces with packagers, is used

for initial caching and propagation of the content to different

regions. The second level CDNs, are then added in each

region according to operator preferences, and provide edge

caching as needed for delivery to end users.

As it follows from the above description, the proposed

architecture is designed specifically to minimize transcoding,

transmuxing, storage, and CDN delivery costs while

supporting plurality of existing codecs, formats, and DRMs

as needed for multi-screen delivery.

MEASURING AND TUNING OVERALL SYSTEM

PERFORMANCE

I. Bandwidth and usage statistics

The collection of bandwidth, usage, and other relevant

statistic in the system shown in Figure 3 is done by the

analytics engine. It collects information from two sources:

players and CDNs. Player’s data are needed for understanding

of which content segments have been played, as well as to

measure buffering and start-up latencies. CDN statistics show

which segments have been delivered to the device and at

which speed. By pooling such data that analytics engine is

able to collect variety of statistics, including information

about usage and bandwidth distributions related to different

categories of client devices.

Examples bandwidth distributions as measured for three

different OTT operators are shown in Figures 4, 5, and 6. The

associated device usage and average bandwidth statistics are

showing in Tables 2, 3, and 4, respectively.

Device type Usage [%] Average bandwidth [Mbps]

PC 0.004 7.5654

Mobile 94.321 3.2916

Tablet 5.514 3.8922

TV 0.161 5.4374

All devices 100 3.3283

TABLE 2: USAGE AND AVERAGE BANDWIDTH STATISTICS FOR OPERATOR 1.

Device type Usage [%] Average bandwidth [Mbps]

PC 63.49 14.720

Mobile 6.186 10.609

Tablet 9.165 12.055

TV 21.15 24.986

All devices 100 16.393

TABLE 3: USAGE AND AVERAGE BANDWIDTH STATISTICS FOR OPERATOR 2.

Device type Usage [%] Average bandwidth [Mbps]

PC 0.0 N/A

Mobile 0.0 N/A

Tablet 0.0 N/A

TV 100 35.7736

All devices 100 35.7736

TABLE 4: USAGE AND AVERAGE BANDWIDTH STATISTICS FOR OPERATOR 3.

Based on information in the above tables and figures, it

follows that bandwidth and usage statistics in these 3 cases

are very different. The operator 1 streams predominantly to

mobiles, and its effective average bandwidth across all

devices is only 3.3Mbps. The operator 2 has a mixed

distribution to PCs, mobiles, tablets, and TV screens. Its

effective average bandwidth across all devices is about

16.393Mbps. The operator 3 streams only to TVs and average

bandwidth in this case is much higher – around 35.77 Mbps.

FIGURE 4: BANDWIDTH HISTOGRAMS MEASURED FOR OPERATOR 1.

FIGURE 5: BANDWIDTH HISTOGRAMS MEASURED FOR AN OPERATOR 2.

FIGURE 6: BANDWIDTH HISTOGRAMS MEASURED FOR OPERATOR 3.

THIS OPERATOR STREAMS ONLY TO CONNECTED TVS.

II. Playback statistics

The analytics engine module also collects and reports variety

of statistics related to quality of experience (QOE) during the

playback. Examples of such statistics collected from above 3

operators are presented in Tables 5-7. In all cases, statistics

are based on streaming of same test content, encoded using 9

renditions as prescribed by standard HLS ladder for H.264

codec [13]. This ladder is shown in Table 8.

Statistics PC Mobile Tablet TV All

Rendition 1 0.00331 0.02046 0.01024 0.00678 0.01987

Rendition 2 0.01732 0.05157 0.03159 0.0207 0.05042

Rendition 3 0.01738 0.1402 0.09481 0.06734 0.13757

Rendition 4 0.05788 0.06888 0.05975 0.0676 0.06837

Rendition 5 0.09267 0.18057 0.18157 0.07306 0.18045

Rendition 6 0.14752 0.26691 0.28177 0.24079 0.26769

Rendition 7 0.14315 0.18247 0.19578 0.14113 0.18313

Rendition 8 0.15852 0.06816 0.09574 0.21973 0.06993

Rendition 9 0.36199 0.0161 0.04503 0.16131 0.01794

Buffering 0.00026 0.00468 0.00372 0.00156 0.00463

Start time 2.14374 4.02900 3.46468 2.60737 3.98948

Bandwidth 5131.21 2730.21 3174.90 4218.81 2757.25

Resolution 861.221 628.680 676.972 794.530 631.624

SSIM 0.97030 0.96666 0.96836 0.96879 0.96676

TABLE 5: PLAYBACK STATISTICS FOR OPERATOR 1.

Statistics PC Mobile Tablet TV All

Rendition 1 0.00798 0.00573 0.00374 0.00022 0.00452

Rendition 2 0.01475 0.0119 0.00937 0.00093 0.00953

Rendition 3 0.01193 0.01635 0.01805 0.00197 0.01319

Rendition 4 0.06136 0.05944 0.10466 0.01077 0.05341

Rendition 5 0.10589 0.05767 0.13437 0.02598 0.06098

Rendition 6 0.14685 0.07741 0.0953 0.05187 0.07794

Rendition 7 0.10422 0.07573 0.07808 0.05372 0.07306

Rendition 8 0.08825 0.07463 0.08211 0.08126 0.07756

Rendition 9 0.45717 0.61389 0.47271 0.77318 0.62495

Buffering 0.00136 0.00648 0.00141 0.00009 0.00435

Start time 1.94761 1.79835 2.00201 1.60687 1.77841

Bandwidth 3840.61 4159.37 3736.25 4655.01 4206.01

Resolution 963.553 993.104 949.804 1053.253 1000.070

SSIM 0.96267 0.96346 0.96236 0.96500 0.96364

TABLE 6: PLAYBACK STATISTICS FOR OPERATOR 2

Statistics TV All

Rendition 1 0.00066 0.00066

Rendition 2 0.00232 0.00232

Rendition 3 0.03165 0.03165

Rendition 4 0.02472 0.02472

Rendition 5 0.04815 0.04815

Rendition 6 0.01428 0.01428

Rendition 7 0.01874 0.01874

Rendition 8 0.02806 0.02806

Rendition 9 0.83091 0.83091

Buffering 0.00051 0.00051

Start time 1.58783 1.58783

Bandwidth 6927.70 6927.70

Resolution 1003.316 1003.316

SSIM 0.97133 0.97133

TABLE 7: PLAYBACK STATISTICS FOR OPERATOR 3.

First 9 rows in the above tables list relative frequencies

of loading of each rendition. This is followed by buffering

probability, start-up latency (in seconds), average bandwidth

(in Kbps), and then average resolution (in frame heights) and

average encoding quality (in SSIM [13]) as delivered by a

combination of streams pulled by streaming clients.

The reported SSIM values are initially computed during

encoding stage, and then retrieved and aggregated into final

average value based on stream load statistics. Such statistics

are provided separately to each category of devices, as well as

in combined form, averaged across all devices (last column).

Rendition Profile Resolution Framerate Bitrate SSIM

1 High 416x234 23.976 145 0.92231

2 High 640x360 23.976 365 0.94337

3 High 768x432 23.976 730 0.95776

4 High 768x432 23.976 1100 0.96788

5 High 960x540 23.976 2000 0.97148

6 High 1280x720 23.976 3000 0.96931

7 High 1280x720 23.976 4500 0.9753

8 High 1920x1080 23.976 6000 0.96861

9 High 1920x1080 23.976 7800 0.97217

Storage 25640

TABLE 8: STANDARD HLS ENCODING LADDER & SSIM QUALITY LEVELS

ACHIEVED FOR CONTENT USED IN THE ABOVE EXPERIMENT.

As easily noticed, despite the fact that content is

identically encoded, the quality of experience delivered by

these 3 operators is very different. The operator 3 pulls mostly

top bitrate 1080p rendition (with probability of about 0.83),

delivering on average about 1003 lines of resolution and

encoding quality of about 0.971 SSIM. In case of operator 2,

the probability of loading of top-most rendition drops to about

0.62 considering all devices, and just about 0.43 for mobiles.

This results in lower resolutions (about 938 lines across all

devices and only 867 lines for mobiles), as well as lower

encoding quality, as ladder shown in Table 8 progressively

drops encoding quality for lower resolutions. Finally, in the

case of operator 1, the situation is even worse. Renditions 3,

5, 6, and 7 become most commonly used, resulting average

delivered resolution of about 631 lines (628 for mobiles), and

encoding quality of about 0.966 SSIM.

III. Means for tuning the system

The system depicted in Figure 3 includes several tools and

means by which it can be adjusted or tuned to achieve best

performance given each operator’s context and needs.

The analytics engine as described above provides

relevant set of performance statistics. Such statistics can be

localized to regions, jobs, content, delivery devices, CDNs,

etc. They help operators to monitor health and efficiency of

the system.

The use of rules API and rules engine allows operators to

select local CDNs and distribute traffic between them

dynamically without disruption of operations. It also allows

operators to impose limits and effectively add or remove some

streams that can be delivered. The addition of streams,

especially low-bitrate ones, may be considered as means for

reducing buffering probability or load times. On the other

hand, removal of some streams may be considered for

reducing bandwidth usage or for improving CDN cache

performance.

Finally, the system in Figure 3 also allows encoding

profile generation for each new content item to be done

dynamically, account for both characteristics of the content as

well as existing bandwidth, usage, and playback statistics for

each operator. We call such profile generation and encoding

process context-aware encoding or CAE. This step effectively

closes the feedback loop provided by the analytics engine, and

allows encoding of new content to be done better, accounting

for current context (delivery and playback statistics) of each

operator.

IV. Context-aware profile generation

When CAE profile generator is activated, it analyzes the

content first, trying to model the space of quality-rate

operating points achievable for a given codec and the content.

This is followed by an optimization process, which selects a

set of rates, resolutions, and other parameters for ABR

encoding profiles, trying to achieve sufficient level of quality

while minimizing bandwidth, storage, compute, and other

resources required for delivery.

Importantly, in such optimization process, the quality

estimates for each possible resolution and bitrate come from

prior content analysis, and the estimates of stream load

probabilities at each rate come from bandwidth statistics

measured for each client. In computing final optimization cost

expression, CAE generator aggregates estimates obtained for

each type of client according to usage distribution, also

provided by the analytics module. In other words, CAE profile

generation is really an end-to-end optimization process for

multi-device /multi-screen delivery.

The formal mathematical description of this optimization

problem can be found in [12]. Reference [17] extends it to a

case of designing profiles using multiple codecs and

fragmentation of their support across different devices.

EXAMPLES OF OPTIMIZATIONS

In this section we show few examples of optimizations

achieved by using above described tools. Primarily, we will

focus on optimizations to operator contexts and content.

I. Adaptations to different networks and devices

Let us now again consider 3 operators with bandwidth and

usage statistics as presented in Figures 4-6 and Tables 2-4,

respectively. Same test video sequence, is used in all cases.

CAE encoding profiles generated for this sequence given

statistics from each of the operators are shown in Tables 9-11.

In all cases, the CAE profile generator was given the

same overall constraints that generally match characteristics

of the HLS reference encoding ladder (see Table 8). This

includes constraints on minimum and maximum bitrates,

constraint on the maximum number of renditions and

maximum change between bitrates in the encoding ladder,

constraints on aspect ratios, framerates, and set of resolutions

that can be used, etc.

However, as can be observed in Tables 9-11, CAE-

generated profiles for each operator are somewhat different.

For operator 1, it generated 7 renditions, with high density of

points around 0-1 Mbps range. For operator 2, it also

generated 7 renditions, however with faster rump towards

higher resolutions and bitrates. Notice, specifically, that

instead of selecting 540p resolution at 4th rendition, it selects

576p. Finally, in cases of operator 3, CAE generated only 5

renditions, which are even more sparsely placed apart. Such

use of fewer renditions leads to lower transcoding costs and

better CDN efficiency.

Besides the changes in the numbers of renditions, we also

notice significant changes in total bitrates occupied by

composition of all renditions in encoding profiles. Thus, all

CAE generated profiles require significantly lower amount of

storage.

Rendition Profile Resolution Framerate Bitrate SSIM

1 Baseline 320x180 30 125 0.93369

2 Baseline 480x270 30 223.08 0.93793

3 Main 640x360 30 398.11 0.94636

4 Main 960x540 30 774.78 0.94953

5 Main 1280x720 30 1549.5 0.95637

6 High 1600x900 30 2765.3 0.96105

7 High 1920x1080 30 4935.1 0.96576

Storage 10771

TABLE 9: CAE-GENERATED ENCODING LADDER FOR OPERATOR 1.

Rendition Profile Resolution Framerate Bitrate SSIM

1 Baseline 320x180 30 125 0.93338

2 Baseline 480x270 30 239.71 0.94122

3 Main 640x360 30 469.54 0.95202

4 Main 1024x576 30 939.08 0.95221

5 Main 1280x720 30 1568.8 0.95658

6 High 1600x900 30 2765.3 0.96105

7 High 1920x1080 30 4935.1 0.96576

Storage 11026

TABLE 10: CAE-GENERATED ENCODING LADDER FOR OPERATOR 2.

Rendition Profile Resolution Framerate Bitrate SSIM

1 Baseline 320x180 30 125 0.93447

2 Baseline 512x288 30 307.42 0.94855

3 Main 960x540 30 803.59 0.95050

4 Main 1280x720 30 1727.8 0.95864

5 High 1920x1080 30 5050.7 0.96599

Storage 8014.6

TABLE 11: CAE-GENERATED ENCODING LADDER FOR OPERATOR 3.

One extra notable difference between CAE profiles and

reference HLS profile (Table 8) is that CAE uses mixed set of

H.264 profiles, starting with Baseline, followed by Main and

High profiles. In contrast, HLS ladder, recommended in

Apple deployment guidelines [13], uses only High profile

across all renditions. CAE generated profiles can therefore

reach a much broader set of playback devices, including those

that can only decode H.264 baseline.

Next, in Tables 12-14 we present playback statistics as

measured for CAE encoded content after delivery across all

three operators. The summary of relative differences between

these statistics and ones obtained for reference HLS profile

(cf. Tables 5-7) are presented in Table 15.

Statistics PC Mobile Tablet TV All

Rendition 1 0.00084 0.00678 0.00398 0.00247 0.00662

Rendition 2 0.00359 0.01851 0.00856 0.00593 0.01794

Rendition 3 0.01834 0.07164 0.04614 0.02805 0.07016

Rendition 4 0.04087 0.13809 0.09536 0.08767 0.13564

Rendition 5 0.10114 0.17519 0.17164 0.08743 0.17485

Rendition 6 0.21248 0.37255 0.39131 0.32508 0.3735

Rendition 7 0.62253 0.21339 0.27992 0.46209 0.21747

Buffering 0.00021 0.00385 0.00309 0.00128 0.00382

Start time 2.56661 3.95220 3.49462 2.91179 3.92152

Bandwidth 3857.24 2504.93 2832.92 3399.98 2524.53

Resolution 966.381 801.556 851.838 915.236 804.521

SSIM 0.96266 0.95797 0.95948 0.96119 0.95806

TABLE 12 PLAYBACK STATISTICS FOR OPERATOR 1 AFTER CAE

OPTIMIZATION.

Statistics PC Mobile Tablet TV All

Rendition 1 0.00248 0.00357 0.00153 0.00008 0.00258

Rendition 2 0.01192 0.00604 0.00513 0.00037 0.00512

Rendition 3 0.01402 0.01654 0.01427 0.00158 0.01301

Rendition 4 0.03352 0.03715 0.05427 0.00538 0.03177

Rendition 5 0.11148 0.07551 0.16928 0.02499 0.07564

Rendition 6 0.20711 0.1134 0.14396 0.07515 0.11391

Rendition 7 0.61811 0.74131 0.61015 0.89236 0.75362

Buffering 0.00136 0.00648 0.00141 0.00009 0.00435

Start time 1.94563 1.79721 2.00044 1.60611 1.77729

Bandwidth 3844.52 4162.01 3739.18 4657.22 4208.66

Resolution 963.553 993.104 949.804 1053.25 1000.07

SSIM 0.96274 0.96352 0.96242 0.96507 0.96370

TABLE 13 PLAYBACK STATISTICS FOR OPERATOR 2 AFTER CAE

OPTIMIZATION.

Statistics TV All

Rendition 1 0.00064 0.00064

Rendition 2 0.00555 0.00555

Rendition 3 0.04259 0.04259

Rendition 4 0.0785 0.0785

Rendition 5 0.87229 0.87229

Buffering 0.00043 0.00043

Start time 1.56135 1.56135

Bandwidth 4579.37 4579.37

Resolution 1023.74 1023.74

SSIM 0.96464 0.96464

TABLE 14 PLAYBACK STATISTICS FOR OPERATOR 3 AFTER CAE

OPTIMIZATION.

Statistic Relative changes [%] for each operator

Operator 1 Operator 2 Operator 3
Renditions -22.222 -22.222 -44.444

Storage -57.991 -56.932 -68.741

Bandwidth -8.4402 -31.307 -33.897

Resolution +27.373 +6.5968 +2.0362

SSIM -0.9003 -0.7447 -0.6895

Buffering -1.7494 -1.0493 -1.5686

Start time -5.7035 -1.0081 -1.6676

TABLE 15 EFFECTS OF CAE OPTIMIZATION FOR 3 OPERATORS.

Table 15 presents relative change values, computed for

average numbers reported across all devices for each operator.

The negative values mean that the use of CAE lead to

reduction in value of the respective parameter by given

percentage. The positive values imply the increase in

parameter value due to the use of CAE.

Based on information presented in Table 15, it can be

observed that the use of CAE optimizations resulted in

significant savings of resources in all 3 cases. The number of

renditions, and consequently transcoding/compute costs were

reduced by 22.2 to 44.4%. The amount of storage was reduced

by 56.9 to 68.7%, reducing cloud storage and bandwidth

costs. The changes in average bandwidth use are also

significant, but more depended on operator’s context. For

example, for operators 2 and 3, which deliver mostly over

high speed networks, the bandwidth savings ranged from 31.3

to 33.9%. For operator 1, delivering over very slow

connections (with average bandwidth around 3.3 Mbps) the

reductions in average bandwidth use were more modest –

about 8.44%. However, the average resolution delivered to

this operator become over 27% higher (804 lines on average

vs 631), and average start-up latency also got decreased by

over 5.7%. In other words, the use of CAE optimizations for

operator 1 have resulted in the increase of quality of

experience, in addition to savings in bandwidth, storage, and

compute costs.

All such optimizations become possible by tuning

encoding profiles to each of the operator’s network

distributions and distributions of playback time between

different categories of receiving devices.

II. Adaptations to different types of content

As discussed earlier, as part of overall optimization process,

CAE profile generator also adapts profiles to specific

properties of each input content. For example, for “easier” to

encode content, such as cartoons or screen captures, CAE may

assign lower bitrates or higher resolutions at same bitrates,

while for more “complex” content, such as high-action sports

or movies, it may assign higher bitrates or lower resolutions

at same bitrates.

To estimate average savings that can be achievable for

different categories of content, we have performed a study,

using 500 video assets, with combined duration of over 120

hours, and representing 33 different categories, such as action

movies, sports, documentary, etc.

Category Relative changes [%] due to using CAE

Renditions Storage Bandwidth Resolution

Action -35.05 -77.28 -59.16 +3.57

Adventure -29.63 -70.17 -51.33 +3.32

Comedy -25.12 -62.16 -41.28 +2.33

Drama -32.36 -73.29 -55.83 +3.55

Scifi -31.38 -71.89 -53.17 +3.27

Cartoon -30.15 -68.82 -47.71 +2.93

Video game -29.2 -67.76 -46.17 +3.17

Baseball -21.57 -61.09 -50.89 +0.76

Basketball -22.1 -57.82 -34.15 +1.72

Boxing -23.71 -65.33 -43.03 +3.1

Cricket -14.29 -58.12 -50.13 +0.97

Cycling -23.11 -58.92 -36.55 +2.35

Field hockey -22.22 -51.57 -22.66 +1.1

Football -28.57 -79.12 -52.25 +1.69

Golf -28.57 -79.38 -74.2 +1.69

Gymnastics -26.1 -65.45 -44.01 +2.79

Hockey -22.22 -51.26 -20.39 +0.08

Mixed sports -23.63 -55.47 -29.22 +1.35

Racing -28.57 -74.68 -66.96 +1.5

Running -23.3 -56.66 -31.99 +2.52

Squash -27.56 -67.18 -47.11 +3.22

Swimming -22.22 -50.04 -19.67 +0.17

Tennis -18.72 -61.04 -51.44 +1.07

Weightlifting -31.44 -72.6 -51.66 +3.78

Documentary -25.72 -59.85 -34.19 +2.19

Game show -28.16 -65.18 -40.95 +3.02

Interview -37.33 -81.17 -74.2 +1.6

Kids channel -24.75 -59.52 -34.04 +1.69

Talk show -36.07 -77.76 -59.02 +3.99

News -25.97 -62.36 -39.64 +2.24

Reality TV -24.94 -58.51 -33.52 +2.46

Sitcom -31.49 -71.93 -54.04 +3.23

Soap opera -34.92 -76.61 -58.83 +3.8

Overall -28.42 -65.64 -43.76 +2.65

TABLE 16: AVERAGE SAVINGS AS MEASURED FOR DIFFERENT CONTENT

CATEGORIES, OPERATOR 2.

Such content was then encoded using standard HLS

profile (Table 8) and by using CAE. Both versions of the

content were delivered to the viewers and playback statistics

have been captured. Same operator was used in both tests.

The results are summarized in Table 16. All numbers

represent relative changes between respective statistics

obtained for encodings produced using default HLS ladder

(Table 8) vs CAE. For compactness of presentation, only the

changes in renditions, storage, bandwidth, and resolution are

presented. The changes in other statistics were minor (<2%).

By looking at data in Table 16, it can be observed, that CAE

improvements are significant across all categories of content.

We also note, that for some categories of content, such as

“Interviews” or “Golf”, the changes in bandwidth are

extremely high (we see savings of about 74%), while for some

other categories, such as “Swimming” or “Hockey”, such

savings are considerably lower (19-22%). The savings in

storage are more consistent across all categories of content.

The changes in the numbers of renditions are also more

consistent across all categories of content.

The above study was produced using H.264 encoder, and

for SDR content. In our experience, we also noted that CAE

savings when using HEVC encoders are generally similar in

magnitude and have same general dependency on the

characteristics of the content.

III. Multi-codec profile optimizations

One of the features of CAE profile generator is the capability

to generate ABR profiles for plurality of existing codecs. In

this case, the generator also uses information about support of

such codecs by different categories of receiving devices. Such

information is supplied as part of operator usage and

bandwidth statistics, provided by analytics engine.

The use of multi-codec profile generation leads to

additional savings in the total number of renditions and

quality gains achievable by clients that can switch between

the codecs.

For example, let us consider a set of mixed H.264+HEVC

ladder points presented in Figure 7. Here, by green and red

lines we plot quality-rate functions achievable for a given

content by HEVC and H.264 codecs respectively. The set of

H.264 streams is connected by an orange line, forming a

“staircase” of quality levels achievable by the H.264-only

client. Similarly, the set of HEVC streams is connected by

gray line, forming another “staircase” representing quality

levels achievable by HEVC-only clients. The dotted blue line

is used to connect points that may be used by clients that can

switch between both codecs. By following the shape of this

blue staircase, it becomes immediately obvious that

hybrid/switchable clients should be able to achieve better

performance than the other clients, as they effectively operate

with a finer-grain ladder, delivering progressively better

quality. But naturally, to enables such improvements, the

locations of H.264 and HEVC streams need to be chosen

carefully, and in consideration of quality-rate characteristics

of both codecs for given content.

FIGURE 7: H.264 AND HEVC-ENCODING LADDERS AND QUALITY LEVELS

ACHIEVABLE BY DIFFERENT TYPES OF CLIENT DEVICES.

Additional results and discussion about how multi-codec

profiles can be optimally generated will be presented in [17].

CONCLUSIONS

We have described an architecture of a large-scale multi-

screen OTT video delivery system. This system was designed

for effective handling of plurality of codecs, DRMs, and

formats as needed for delivery to a population of client

devices with different capabilities. We have also described

specific tools and techniques that we have added to optimize

end-to-end performance of such system. The effectiveness of

the proposed techniques has been illustrated by examples of

system statistics before and after optimizations.

REFERENCES

[1] D. Wu, Y.T. Hou, W. Zhu, Y-Q. Zhang, and J.M. Peha,
“Streaming video over the internet: approaches and directions,”

IEEE Transactions on Circuits and Systems for Video

Technology, vol. 11, no. 3, pp. 282–300, 2001.

[2] G. J. Conklin, G. S. Greenbaum, K. O. Lillevold, A. F. Lippman,

and Y. A. Reznik, “Video coding for streaming media delivery
on the internet,” IEEE Transactions on Circuits and Systems for

Video Technology, vol. 11, no. 3, pp. 269–281, March 2001.

[3] ISO/IEC 14496-10:2003, “Information technology – Coding of
audio-visual objects – Part 10: Advanced Video Coding,”

December 2003.

[4] ISO/IEC 23008-2:2013, “Information technology –High
efficiency coding and media delivery in heterogeneous

environments – Part 2: High efficiency video coding,” December

2013.

[5] R. Pantos and W. May, “HTTP live streaming, RFC 8216,”

https://tools.ietf.org/html/rfc8216, August 2017.

[6] ISO/IEC 23009-1:2012, “Information technology – Dynamic
adaptive streaming over HTTP (DASH) – Part 1: Media

presentation description and segment formats,” February 2012.

[7] ISO/IEC 23000-19, Information technology - Coding of audio-
visual objects - Part 19: Common media application format

(CMAF) for segmented media.

https://www.iso.org/standard/71975.html

[8] Media Source Extensions, W3C, https://www.w3.org/TR/media-

source/

[9] Encrypted Media Extensions, W3C,

https://www.w3.org/TR/encrypted-media/

[10] A. Zambelli, Smooth streaming technical overview, Microsoft

Corp., Redmond,WA, USA, Tech. Rep. [Online]. Available:
http://www.iis.net/learn/media/on-demand-smooth-

streaming/smooth-streamingtechnical-overview

[11] J. Ozer, Encoding for multiple devices, Streaming Media
Magazine, March 2013,

http://www.streamingmedia.com/Articles/ReadArticle.aspx?Arti

cleID=88179&fb_comment_id=220580544752826_937649

[12] Y. A. Reznik, K. O. Lillevold, A. Jagannath, J. Greer, and J.

Corley, “Optimal design of encoding profiles for ABR

streaming,” in Proc. 23rd Packet Video Workshop (PV’2018),

Amsterdam, The Netherlands, June 12, 2018, pp. 43–47.

[13] Apple Inc., “HLS authoring specification for Apple devices,”

https://developer.apple.com/documentation/http_live_streaming/
hls_authoring_specification_for_apple_devices, September

2018.

[14] A. Aaron et al., “Per-title encode optimization,”

https://medium.com/netflix-techblog/per-title-encode-

optimization-7e99442b62a2, December 15 2015, Netflix

technology blog.

[15] Ultra HD Forum, “Ultra HD Forum phase B guidelines,”

https://ultrahdforum.org/wp-content/uploads/Ultra-HD-Forum-

Phase-B-Guidelines-v1.0.pdf, April 2018.

[16] Z. Wang, L. Lu, and A. C. Bovik, “Video quality assessment

based on structural distortion measurement,” Signal Processing:

Image Communication, vol. 19, no. 2, pp. 121 – 132, 2004.

[17] Y. A. Reznik, X. Li, K. O. Lillevold, A. Jagannath, and J. Greer,

“Optimal design of multi-codec profiles for ABR streaming,” in
Proc. IEEE Int. Conf. Multimedia and Expo (ICME’2019),

Shanghai, China, July 8-12, 2019 – submitted.

