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Abstract—We study the behavior of a modern-era adaptive 

streaming system delivering videos embedded in web-pages. In 

such an application, the size of videos rendered on the screen may 

depend on user preferences, such as the position and size of a 

browser window. Moreover, the stream selection logic in such a 

system appears to be influenced not only by the available network 

bandwidth but also by the output video size, which, in many cases, 

limits the selection of higher quality streams. To explain this 

behavior, in this paper we introduce a simple analytical model of 

a client adapting to both bandwidth and player size. Using this 

model, we then compute stream selection probabilities and show 

that they are sufficiently close to respective statistics observed in 

practical experiments. Possible uses of this proposed client model 

are also suggested. Specifically, we show how it can be used to 

derive formulae for the average performance parameters of the 

system and also for posing related optimization problems.    

Keywords—ABR streaming, encoding ladder, stochastic models, 

average-case analysis, non-linear constrained optimization 

I. INTRODUCTION 

A. The behavior of adaptive streaming 

Continuous playback under unknown or dynamically 
changing network conditions was the first and arguably most 

fundamental problem that early Internet streaming systems have 
tried to address [1-3]. An early example of a satisfactory solution 
was the so-called “SureStream” technology, introduced by 
RealNetworks in 1998 [3]. The main idea was to encode media 
at multiple bitrates and design a system switching between such 
streams adaptively, as needed to match network bandwidth, 
observable at each point in time. The same basic concept is well 
known today as Adaptive Bitrate Streaming, providing the basis 
for modern streaming protocols and standards such as HLS [4] 
and DASH [5]. In all such recent systems, the decisions about 
stream selections are usually done by streaming clients, running 
on user devices.  

 Moreover, in the modern days of streaming, and specifically 
in streaming to web browsers, there is another important 
parameter affecting the playback. It is the size of a video player 
window or video display area on a webpage. What causes its 
variation are user preferences, influencing the position and size 
of the browser window on the screen, as well as form 
factor/display size of the user device.  

 To illustrate the significance of this parameter, in Fig. 1, we 
show playback statistics captured during a large scale web 
streaming event. In Table 1, we also list the parameters of the 
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Fig. 1. Playback statistics captured during a large scale live streaming event. 
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encoded streams used for this event. The playback statistics data 
used in this example are provided in [8]. 

TABLE I.  ABR LADDER USED FOR STREAMING OF THE EVENT. 

Rendition Codec Profile Resolution Framerate Bitrate 

1 H.264 Baseline 480x270 23.976 450k 

2 H.264 Baseline 640x360 23.976 800k 

3 H.264 Main 768x432 23.976 1000k 

4 H.264 Main 1024x576 23.976 1500k 

5 H.264 Main 1280x720 23.976 2100k 
 

As shown in Fig. 1, the distribution of player resolutions 
exhibits several highly distinct peaks, with 480p being the most 
pronounced. We also see that player sizes do have a significant 
impact on stream selection logic. E.g., from the bottom left plot, 
we see that 270p rendition was loaded most frequently when 
player window sizes were about 300 lines or less. Similarly, 
720p rendition was loaded most frequently when player sizes 
were about 600 lines and beyond. From the bottom right plot, 
we further see that, as expected, clients also switch streams 
based on the available network bandwidth. However, in the 
high-bitrate regime, we notice that it is not the highest bitrate 
stream (720p, 210Kbps) that becomes used exclusively, but 
rather a particular mix of all renditions, apparently shaped by the 
distribution of player sizes.  

In other words, we see that player sizes significantly affect 
the choices of streams used by the system. In this paper, we will 
try to explain the above-observed effects. We will approach this 
problem mathematically, by first offering a simple deterministic 
player model, and then by using probabilistic techniques to 
derive conditional probabilities of rendition loads under certain 
assumptions about statistical behavior of networks bandwidth 
and player sizes. We will then study differences between the 
predicted and the observed behavior. Additional applications of 
the proposed model will also be discussed. 

B. Prior and related work 

Most early studies on adaptive streaming systems have focused 
on network-related issues: congestions, packet losses, CND 
cache misses, etc. [1-3,9]. Rate adaptation algorithms have also 
been in focus [10-12].  The fact that content can be different has 
also been exploited, producing so-called “per-title” [13], 
“content-aware” [14], and “context-aware” techniques [15-18]. 
Earlier uses of probabilistic techniques and idealized client 
models can be found in [15,16,18]. However, most of these 
results have been obtained under the assumption that streaming 
clients are adapting only to network bandwidth. Adaptation to 
player sizes, as we have just observed, makes system behavior 
much more complex. This paper focuses on the derivation of an 
adequate client model. Applications of this proposed model for 
the analysis and optimizations of such systems will be discussed 
in detail in forthcoming papers [19,20]. 

C. Outline 

  This paper is organized as follows. In Section II we offer 
definitions of the most involved variables and stochastic models. 
In Section III, we introduce our model of the client. In Section 
IV we will use this model to compute rendition load 
probabilities and compare them to the experimental results. In 

Section V we will discuss applications of this proposed model. 
In Section 6, we will offer conclusions. 

II. DEFINITIONS 

A. Encoding ladders 

 By an encoding profile or a ladder, we will understand is a 
set of video resolutions and bitrates at which a given video asset 
is encoded for streaming: 

 (𝑊𝑖 × 𝐻𝑖 , 𝑅𝑖),   𝑖 = 1, … , 𝑛. (1) 

Here 𝑊𝑖  denotes video width [in pixels], 𝐻𝑖  denotes video 
height [in pixels], and 𝑅𝑖  denotes bitrate [in Kbps] of each 
rendition. Parameter 𝑛 denotes the number of renditions in the 
ladder. Parameter 𝑖 denotes rendition index.  

 For simplicity, we will also assume that the aspect ratios 
𝑊𝑖/𝐻𝑖  of all renditions in a ladder are the same. Therefore, 
specification of a single resolution parameter, e.g., height 𝐻𝑖  is 
sufficient. 

 We will further say that the ladder is proper if bitrates are 
strictly increasing 0 < 𝑅1 < ⋯ < 𝑅𝑛, and resolutions are non-
decreasing  0 < 𝐻1 ≤ ⋯ ≤ 𝐻𝑛 for all renditions in the ladder. 
Table 1 represents an example of a proper ladder.  

B. Player sizes 

By 𝑊𝑝 ×  𝐻𝑝 we will denote the width and the height [in 

pixels] of a player. For simplicity, we will also assume that 

player size has the same aspect ratio as video, and therefore 

specification of only player height 𝐻𝑝 is sufficient. 

When working with a population of streaming clients and 

viewers of the content, we will be dealing with a set ℋ𝑝  of 

possible player sizes 𝐻𝑝 ∈ ℋ𝑝 that may be selected by different 

viewers. Furthermore, to model that such different player sizes 

may be selected with different probabilities, we will assume 

that 𝐻𝑝 is a discrete random variable with a certain probability 

mass function  𝑞(𝐻𝑝), defined over ℋ𝑝.  

An example of the distribution of player sizes observed in 

practice is provided in the top left subfigure in Fig. 1.  

C. Network bandwidth 

By 𝐵 we will denote network bandwidth value [in Kbps] that 
may be observed (or measured) by a streaming client.  

To enable the probabilistic study of the streaming system, we 
will further assume that 𝐵 is a continuous random variable with 
a certain given probability density function 𝑝(𝐵) and support  
[0, ∞). 

 An example of the distribution of network bandwidth values 
as measured by a population of streaming clients in practice is 
provided in the top right subfigure in Fig. 1. 

III. THE PROPOSED CLIENT MODEL 

As we have already seen in Fig. 1, it appears that practical 

web streaming clients make decisions about which streams to 

use based at least on two parameters: available network 



bandwidth 𝐵 , and player window size 𝐻𝑝 . To capture this 

behavior, we will first propose adaptation models for each of 

these variables separately and then offer a combined model.  

To describe client adaptation to network bandwidth, we 

will use the following model: 

 𝑖𝐵(𝐵) = [

1 𝑖𝑓 𝐵 < 𝑇1
𝐵                                              

𝑖 𝑖𝑓 𝑇𝑖
𝐵 ≤ 𝐵 < 𝑇𝑖+1

𝐵 ,  𝑖 = 2, . . , 𝑛 − 2,

𝑛 𝑖𝑓 𝐵 ≥ 𝑇𝑛+1
𝐵                                             

 (3) 

 𝑇𝑖
𝐵 = (1 + 𝛿)𝑅𝑖+1,     𝑖 = 1. . 𝑛 − 1, (4) 

where 𝑖𝐵(𝐵) denotes the index of rendition selected, 𝐵 is the 

available network bandwidth, 𝑅𝑖  are ladder bitrates, 𝑇𝑖
𝐵  are 

bandwidth decision thresholds, and where 𝛿 ≥ 0  is a 

“bandwidth overhead” constant, used to characterize the extent 

to which a client is trying to utilize all available bandwidth.  

We show the plot of this model function in the left 

subfigure of Fig. 2. The plot is rendered for 𝛿 = 0.35.  

To describe client adaptation to player window, we will use 

the following model: 

 𝑖𝐻(𝐻𝑝) = [

1 𝑖𝑓 𝐻𝑝 < 𝑇1
𝐻                                               

𝑖 𝑖𝑓 𝑇𝑖
𝐻 ≤ 𝐻𝑝 < 𝑇𝑖+1

𝐻 ,  𝑖 = 2, . . , 𝑛 − 2,

𝑛 𝑖𝑓 𝐻𝑝 ≥ 𝑇𝑛−1
𝐻                                              

 (5) 

 𝑇𝑖
𝐻 = 𝛼𝐻𝑖 + (1 − 𝛼)𝐻𝑖+1, 𝑖 = 1. . 𝑛 − 1  (6) 

where  𝑖𝐻(𝐻𝑝) denotes the index of rendition selected, 𝐻𝑝  is 

the player height,  𝐻𝑖  are the heights of renditions in the ladder, 

𝑇𝑖
𝐻 are the player resolution-based decision thresholds, and 

where 𝛼 ∈ (0,1)   is a constant describing the client’s 

preference towards downscaling vs. upscaling.  

We show the plot of this model function in the middle 

subfigure of Fig. 2. The plot is rendered for 𝛼 = 0.5. 

Finally, when we consider adaptation to both network and 

player-size parameters, we will assume that player logic will be 

to pick the “safer” choice:  

 𝑖(𝐵, 𝐻𝑝) = min  { 𝑖𝑅(𝐵), 𝑖𝐻(𝐻𝑝) }. (7) 

As easily observed, with a proper ladder, this logic results 

in the selection of renditions with rates always below the 

available network bandwidth, and resolutions below decision 

points based on player window size. We plot this model 

function in the right subfigure in Fig. 2. 

In passing, we must note that the proposed client model (7) 

is indeed extremely simple. It is simply a function of two 

parameters: bandwidth 𝐵 and player size 𝐻𝑝 . This model has 

no state and no dependencies on buffer size, current buffer 

fullness, and various additional parameters that all normal 

implementations of streaming clients would have. However, as 

we will show in the next section, even such a basic and simple 

model is sufficient to predict several key effects that we have 

observed in the real-world playback statistics with web players.  

IV. MODEL FITTING AND ACCURACY ANALYSIS 

A. Rendition load probabilities 

Given out introduced client model 𝑖(𝐵, 𝐻𝑝) , as well as 

assumed probabilistic behavior of player sizes  𝐻𝑝 and network 

bandwidth 𝐵 , we can next write formulae for conditional 

probabilities of loading of k-th rendition: 

𝑃(𝑘 | 𝐻𝑝) = ∫ 𝑝(𝐵)

 

𝐵: 𝑖(𝐵,𝐻𝑝)=𝑘

𝑑𝐵, 𝑘 = 1, … , 𝑛 (8) 

  

𝑃(𝑘 | 𝐵) = ∑ 𝑞(𝐻𝑝)

𝐻𝑝: 𝑖(𝐵,𝐻𝑝)=𝑘 

, 𝑘 = 1, … , 𝑛 
(9

) 

In these formulae, the ranges of integration or summation are 

the regions of values of 𝐵 or  𝐻𝑝 such that the index of rendition 

that becomes selected is 𝑘. 

The derived expressions conditional probabilities (8,9) 

define possible analytical models for the same quantities that 

we empirically measured and shown earlier in lower sub-

figures of Fig. 1.  

   
Fig. 2. Construction of streaming client model. Left: rendition selection based on the available network bandwidth B. Middle: rendition selection based on 

player window size Hp. Right: the combined rendition selection logic. 



B. Streaming data set. Empirical load probabilities. 

In [8], we provide a set of playback statistics collected 

during a large-scale streaming event. For streaming of this 

event, Brightcove VideoCloud system [6] was used, employing 

players built using the open-source video.js player 

framework [7]. VideoCloud Analytics system [6] was used to 

capture the playback statistics.  

Specific data provided in the repository [8] include:  

- encoding ladder information (cf. Table 1), 

- raw player logs, reporting payer parameters reported at 

each 10sec events during playback, 

- as well as derived empirical distributions (histograms): 

o 𝑝̂(𝐵) – network bandwidth histogram, 

o 𝑞̂(𝐻𝑝) – histogram of player sizes, 

o 𝑃̂(𝑘 | 𝐵)  – conditional load probabilities of 

each rendition w.r.t. network bandwidth, and 

o 𝑃̂(𝑘 | 𝐻𝑝) – conditional load probabilities of 

each rendition w.r.t. player sizes. 

Overall, the dataset [8] provides records of over 200M of 

client events, which we feel is sufficient for reliable estimation 

of rendition load probabilities and other performance statistics.   

C. Fitting the player model to empirical statistics 

Recall, that our proposed player model (7) uses 2 tuning 

parameters: 𝛼 and 𝛿 . In order to find them, we will need to 

minimize the differences between the model probabilities 

𝑃(𝑘 | 𝐵) = 𝑃(𝑘 | 𝐵, 𝛼, 𝛿) and corresponding empirical values  

𝑃̂(𝑘 | 𝐵) provided in the dataset [8].  

We use the following objective function: 

Φ(𝛼, 𝛿) = ∑ 𝑝̂(𝐵)

𝐵 

∑|𝑃(𝑘 | 𝐵, 𝛼, 𝛿) − 𝑃̂(𝑘 | 𝐵)|

𝑛

𝑘=1

 (10) 

where the summation is done over distinct bandwidth values 𝐵 

as reported in the dataset [8], and where 𝑝̂(𝐵)  represents 

empirically measured probability of occurrence of bandwidth 

value 𝐵. This objective function (10) can be understood as the 

average variational distance between empirical and model-

derived distributions. We note that in the computation of 

model-based probabilities (9) we used the support set ℋ̂𝑝 and 

empirical player size distribution 𝑞̂(𝐻𝑝)  as provided by the 

same dataset [8]. 

In order to solve the optimization problem: 

Φ(𝛼∗, 𝛿
∗
) = min

𝛼,𝛿
Φ(𝛼, 𝛿). (11) 

we used brute force enumeration, which with a precision of 

1e-3 has yielded 𝛼∗ = 0.723, and 𝛿∗ = 0.45.  

D. Model accuracy 

In Fig 3. we present the superimposed plots of real-word 

and model-predicted conditional probabilities 𝑃(𝑘 | 𝐵) 

computed by using our model with optimal choice of model 

parameters 𝛼 and 𝛿. The fit accuracy is further investigated and 

reported by using 4 different distance metrics [19] in Table 2. 

Such metrics were computed for each bandwidth value 𝐵, and 

subsequently averaged across the range of bandwidth values 

and by using density 𝑝̂(𝐵). 

TABLE II.  MODEL FIT ACCURACY. 

Metric Accuracy 

Average L1 norm (variational distance) 0.176283 

Average L2 norm 0.101642 

Average Information Divergence 𝐷(𝑃̂||𝑃) 0.205428 

Average Kolmogorov-Smirnov test  0.073857 

Based on plots in Fig. 3, it can be observed that the 

proposed client model, despite its extreme simplicity, predicts 

several key phenomena reasonably well. Thus, it can be 

observed, that the rendition switch positions along bandwidth 

𝐵 are well aligned with the corresponding changes in the client-

reported statistics. We also notice, that in the high-bandwidth 

 
Fig. 3. Observed vs model-predicted conditional probabilities of loading of each rendition. 
 



regime this model captures very well the behavior of the real-

world system. In other words, this model explains sufficiently 

well why web-clients may not use high bitrate renditions even 

in the excess of bandwidth available.  

By studying plots in Fig. 3, we also notice several additional 
effects that our simple client model does not capture. For 
example, we notice that real-world rendition selection windows 
not only do not have sharp vertical boundaries, but they are not 
even symmetric! The switch-down transition in player statistics 
seems to be more spread. Indeed, most of such extra detail can 
easily be captured by making the client model non-deterministic, 
i.e., treating it as a random process, with a particular density over 
(𝐵, 𝐻𝑝) space. However, moving along this path is unlikely to 

achieve much from a methodological standpoint. The simple 
model that we have now is both intuitive and performs 
reasonably well to support some useful applications.   

V. APPLICATIONS 

A. Average performance analysis of streaming systems 

The proposed client model can be easily used to derive the 
precise expressions for many average performance parameters 
of streaming systems. For example, the average bitrate 
consumed by the streaming system can be expressed as follows: 

𝑅̅ = ∫ 𝑝(𝐵)

∞

0

∑ 𝑞(𝐻𝑝)

𝐻𝑝∈ℋ𝑝
 

 𝑅𝑖(𝐵,𝐻𝑝)𝑑𝐵, (12) 

where 𝑅𝑖  denotes bitrate of rendition selected given each 
combination of bandwidth 𝐵  and player size 𝐻𝑝  and where 

integration and summation are done for both. Similarly, we can 
produce expression for the average quality achieved in the 
system: 

𝑄̅ = ∫ 𝑝(𝐵)

∞

0

∑ 𝑞(𝐻𝑝)

𝐻𝑝∈ℋ𝑝
 

𝑄 (𝐻𝑖(𝐵,𝐻𝑝), 𝐻𝑝, 𝑅𝑖(𝐵,𝐻𝑝)) 𝑑𝐵, (13) 

where 𝑄(𝐻𝑖 , 𝐻𝑝, 𝑅𝑖)  is a model of quality for encoded and 

delivered stream, given its encoded resolution 𝐻𝑖 , bitrate 𝑅𝑖, and 
player size 𝐻𝑝. Again, our client model (9) is utilized here to 

obtain both selected stream resolution and bitrate. Additional 
details about suitable for this purpose quality metric and 
performance analysis of streaming systems can be found in [19]. 

B. Design of optimal ladders for web streaming 

Given the above-derived expressions for the average quality 
delivered by the streaming system (13), the problem of finding 
parameters of an encoding ladder: 𝐻1 , … , 𝐻𝑛  and  𝑅1, … , 𝑅𝑛 
maximizing such average quality can be posed. Additional 
details about the setting of such an optimization problem and 
finding its solution can be found in [20]. 

VI. CONCLUSIONS 

In this paper, we have studied the behavior of a streaming 
system delivering videos embedded in web pages. We have 
noticed that client adaptation logic in such systems is influenced 
not only by the available network bandwidth but also by the size 
of the player window (or viewport of a web page) on the screen. 

To study this phenomenon, we have introduced a simple 
analytical model of streaming clients using adaptation to both of 
these parameters, and then studied its accuracy relative to 
statistics of player behavior observed in practice. This study has 
shown that the proposed model approximates real player 
behavior reasonably well. Possible uses of this proposed client 
model for the analysis and optimization of streaming systems 
have also been discussed.  
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