SSIM REVISITED: FROM STRUCTURAL SIMILARITY TO ERROR VISIBIITY

Yuriy Reznik Brightcove, Inc.

MhV/2024 ACM MILE HIGH VIDEO Denver, CO, February 11-14, 2024

BRIGHTCOVE[®]

Outline

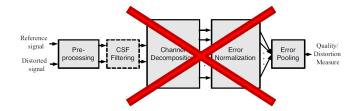
- Introduction
- Alternative model for computing SSIM
- Advantages
 - Methodological new reasoning explaining why SSIM works
 - Encoding optimizations for boosting SSIM scores
 - Relationship between SSIM and other objective metrics
 - Path toward improvements and extensions
- Experimental validations
- Conclusions

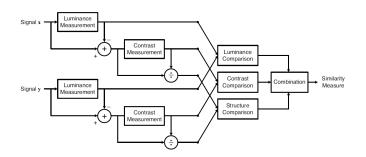
INTRODUCTION

© Brightcove Inc. All Rights Reserved.

SSIM concept

SSIM concept (Wang et al 2004)


- Build metric that is simpler than multi-band CSF-based metrics
- Instead of modeling vision, measure "structural similarity" between images


Original SSIM definition:

- Patch-based computation (11x11 patches with Gaussian weights/ σ=1.5)
- A product of 3 quantities:
 - differences in luminance: $l(x, y) = \frac{2\mu_x\mu_y + C1}{\mu_x^2 + \mu_y^2 + C1}$
 - differences in contrast: $c(x, y) = \frac{2\sigma_x \sigma_y + c}{\sigma_x^2 + \sigma_y^2 + \sigma_y^2}$
 - differences in structure: $s(x, y) = \frac{\sigma_{xy} + C2}{\sigma_{x}\sigma_{y} + C2}$
- Frame-level SSIM = aggregate of patch-level estimates.

Some questions:

- With default C1,C2 constants the second part of SSIM reduces to: $\frac{2\sigma_{xy}}{\sigma_x^2 + \sigma_y^2}$
 - This is no longer a measure of difference in contrast or structure!
 - What it measures then?
- It was suggested [Horé & Ziou 2010] that: $\frac{1-SSIM}{SSIM} \sim \frac{MSE}{2\sigma_{xy}}$
 - Is this true? Is there a real connection between SSIM and MSE/PSNR?

$$SSIM(x, y) = l(x, y) \cdot c(x, y) \cdot s(x, y) = \frac{2\mu_x\mu_y + C1}{\mu_x^2 + \mu_y^2 + C1} \cdot \frac{2\sigma_x}{\sigma_x^2 + \sigma_y^2 + C2} \cdot \frac{\sigma_{xy} + C2}{\sigma_x + \sigma_y^2 + C2} = \frac{2\mu_x\mu_y + C1}{\mu_x^2 + \mu_y^2 + C1} \cdot \frac{2\sigma_{xy} + C2}{\sigma_x^2 + \sigma_y^2 + C2}$$

Some References

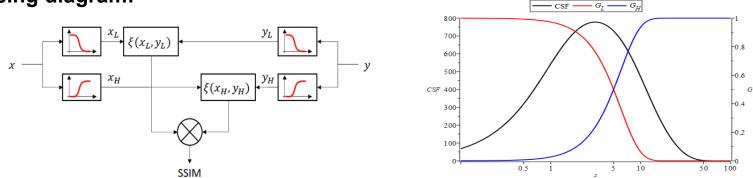
- 1. Z. Wang, A. Bovik, H. Sheikh, E. Simoncelli, "Image quality assessment: from error visibility to structural similarity". IEEE Transactions on Image Processing, vol. 13, no. 4, pp. 600–612, 2004.
- 2. Z. Wang, E. P. Simoncelli and A. C. Bovik, "Multiscale structural similarity for image quality assessment," 37th Asilomar Conference on Signals, Systems & Computers, 2003, vol.2, pp. 1398-1402.
- 3. R. Dosselmann and X. D. Yang, "Existing and emerging image quality metrics," Proceedings of the Canadian Conference on Electrical and Computer Engineering, pp.1906-1913, 2006.
- 4. A.Horé, D. Ziou, "Image quality metrics: PSNR vs. SSIM," ICPR 2010.
- 5. D. Brunet, E.R. Vrscay, and Z. Wang, "On the mathematical properties of the structural similarity index," IEEE Transactions on Image Processing, 21(4), 2011, pp.1488-1499.
- 6. T. Richter and K. J. Kim, "A MS-SSIM Optimal JPEG 2000 Encoder," 2009 Data Compression Conference, 2009, pp. 401-410.
- 7. F. N. Rahayu, U. Reiter, T. Ebrahimi, A. Perkis, and P. Svensson, "SS-SSIM and MS-SSIM for digital cinema applications," Proc. SPIE 7240, Human Vision and Electronic Imaging XIV, 72400P (10 February 2009)
- 8. S. Wang, A. Rehman, Z. Wang, S. Ma and W. Gao, "SSIM Motivated Rate-Distortion Optimization for Video Coding," in IEEE Transactions on Circuits and Systems for Video Technology, vol. 22, no. 4, pp. 516-529, April 2012
- 9. W. Wu and X. Zhang, "Code performance improvement scheme for X264 based on SSIM," 2012 3rd IEEE International Conference on Network Infrastructure and Digital Content, 2012, pp. 396-400.
- 10. Z. Wang, K. Zeng, A. Rehman, H. Yeganeh, and S. Wang, "Objective video presentation QoE predictor for smart adaptive video streaming," Proc. SPIE 9599, Applications of Digital Image Processing XXXVIII, 95990Y, 22 September 2015.
- 11. Y. Reznik, "Another look at SSIM image quality metric" in Electronic Imaging, 2023, pp 305-1 305-7.
- 12. L. Trudeau, "A pre-processing filter for SSIM." Online: https://medium.com/ @luc.trudeau/a-pre-processing-filter-for-ssima60ce91f3374

ALTERNATIVE MODEL OF SSIM COMPUTATION

Proposed Alternative Model

Symmetric 2-band definition

Full formula:

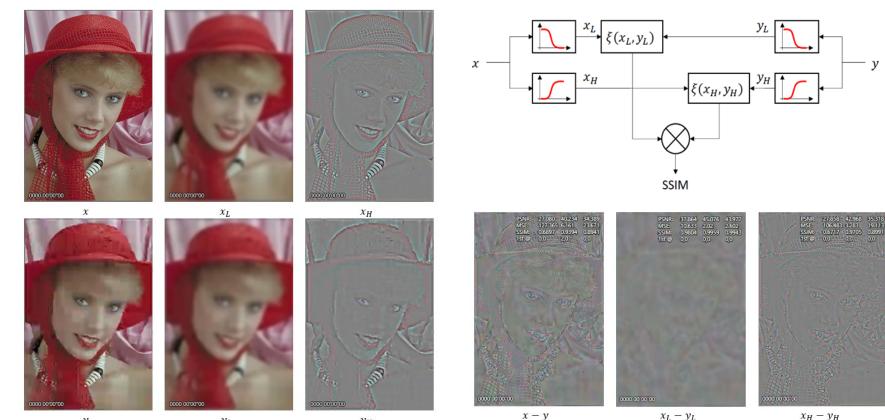

$$SSIM(x, y) \approx \xi(x_L, y_L) \cdot \xi(x_H, y_H)$$

Where

$$\xi(x, y) = \frac{2E[xy] + C}{E[x^2] + E[y^2] + C}$$

are identical operators applied to low-pass and high-pass versions of images x, y.

Processing diagram:



Band Separation:

- Low-pass and high-pass are obtained by Gaussian filter with sigma=3.
- In viewing settings where display Nyquist is 40 cpd this implies split at point of peak sensitivity of human vision.

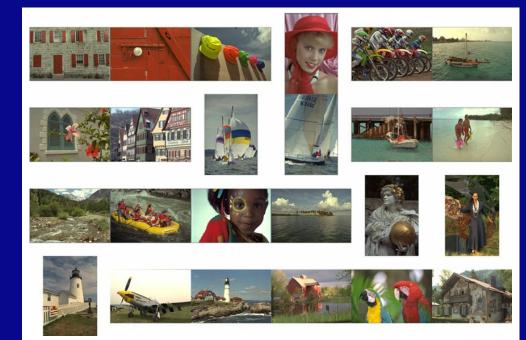
Example of operation

y

YL

Ун

 $x_L - y_L$



Experimental Validations

Impairments:

- Codec introduced noise
- Resolution changes
- Gaussian blur
- Additive noise

Data set: Kodak test images

Codec noise / hi-res images

TABLE I. ACCURACY OF THE PROPOSED METHOD FOR COMPUTING SSIM: H.264 ENCODING/DECODING, 1536X1024 IMAGES..

File	QP=17		QP=22		QP=27		QP=32		QP=37		QP=42		QP=47	
	SSIM	Delta												
k01	0.9949	0.0003	0.9867	0.0008	0.9697	0.0016	0.9337	0.0028	0.8687	0.0038	0.7766	0.0026	0.6648	-0.0026
k02	0.9928	0.0000	0.9784	0.0001	0.9447	0.0001	0.8962	-0.0009	0.8318	-0.0033	0.7569	-0.0069	0.6843	-0.0119
k03	0.9879	0.0000	0.9768	-0.0001	0.9669	-0.0003	0.9506	-0.0008	0.9251	-0.0016	0.8947	-0.0033	0.8617	-0.0059
k05	0.9906	-0.0001	0.9782	-0.0004	0.9603	-0.0009	0.9327	-0.0018	0.8937	-0.0034	0.8453	-0.0063	0.7928	-0.0108
k06	0.9941	0.0003	0.9869	0.0005	0.9757	0.0007	0.9551	0.0008	0.9168	0.0004	0.8552	-0.0015	0.7619	-0.0067
k07	0.9930	0.0001	0.9851	0.0003	0.9709	0.0006	0.9427	0.0006	0.8920	0.0000	0.8126	-0.0027	0.7108	-0.0076
k08	0.9889	-0.0002	0.9781	-0.0004	0.9707	-0.0008	0.9599	-0.0016	0.9427	-0.0030	0.9173	-0.0056	0.8811	-0.0087
k11	0.9956	0.0003	0.9853	0.0010	0.9626	0.0022	0.9326	0.0030	0.8876	0.0030	0.8180	0.0019	0.7076	-0.0030
k12	0.9893	0.0000	0.9623	0.0001	0.9320	-0.0001	0.9180	-0.0006	0.8989	-0.0016	0.8708	-0.0038	0.8376	-0.0065
k13	0.9898	0.0000	0.9645	0.0001	0.9328	-0.0004	0.9149	-0.0014	0.8931	-0.0031	0.8649	-0.0055	0.8321	-0.0084
k14	0.9918	0.0002	0.9799	0.0004	0.9611	0.0006	0.9264	0.0004	0.8701	-0.0012	0.8019	-0.0044	0.7361	-0.0083
k15	0.9887	0.0000	0.9776	-0.0002	0.9646	-0.0005	0.9443	-0.0015	0.9169	-0.0029	0.8888	-0.0049	0.8673	-0.0063
k16	0.9967	0.0001	0.9911	0.0003	0.9753	0.0006	0.9363	0.0011	0.8557	0.0005	0.7283	-0.0034	0.5750	-0.0123
k20	0.9932	0.0001	0.9826	0.0001	0.9637	-0.0001	0.9281	-0.0014	0.8704	-0.0046	0.7942	-0.0102	0.7149	-0.0162
k21	0.9909	-0.0001	0.9805	-0.0003	0.9645	-0.0007	0.9393	-0.0017	0.9069	-0.0033	0.8707	-0.0050	0.8339	-0.0073
k22	0.9907	0.0000	0.9804	0.0000	0.9677	-0.0001	0.9433	-0.0003	0.8989	-0.0009	0.8316	-0.0029	0.7461	-0.0078
k23	0.9908	-0.0002	0.9687	-0.0007	0.9367	-0.0018	0.9121	-0.0035	0.8840	-0.0055	0.8510	-0.0079	0.8090	-0.0101
k24	0.9945	0.0000	0.9820	-0.0001	0.9431	-0.0004	0.8858	-0.0015	0.8310	-0.0038	0.7617	-0.0077	0.6729	-0.0136
k04	0.9913	0.0001	0.9741	0.0000	0.9555	0.0000	0.9282	0.0002	0.8788	-0.0003	0.8172	-0.0023	0.7594	-0.0041
k09	0.9889	0.0000	0.9739	-0.0001	0.9632	-0.0001	0.9453	-0.0003	0.9128	-0.0011	0.8726	-0.0033	0.8375	-0.0052
k10	0.9912	0.0000	0.9701	0.0001	0.9484	0.0001	0.9269	0.0001	0.8918	-0.0003	0.8395	-0.0024	0.7723	-0.0082
k17	0.9913	-0.0001	0.9765	-0.0002	0.9562	-0.0006	0.9225	-0.0017	0.8716	-0.0040	0.8097	-0.0076	0.7471	-0.0108
k18	0.9877	-0.0004	0.9705	-0.0010	0.9575	-0.0017	0.9441	-0.0026	0.9286	-0.0037	0.9107	-0.0046	0.8900	-0.0048
k19	0.9928	0.0002	0.9846	0.0003	0.9718	0.0002	0.9471	-0.0004	0.9041	-0.0024	0.8395	-0.0069	0.7560	-0.0139
RMS	0.9915	0.0002	0.9781	0.0004	0.9591	0.0009	0.9321	0.0016	0.8909	0.0028	0.8360	0.0052	0.7727	0.0091

Codec noise / low-res images

TABLE II. ACCURACY OF THE PROPOSED METHOD FOR COMPUTING SSIM: H.264 ENCODING/DECODING, 384x256 IMAGES.

File	QP=17		QP=22		QP=27		QP=32		QP=37		QP=42		QP=47	
	SSIM	Delta												
k01	0.99698	0.00037	0.99194	0.00097	0.97784	0.00241	0.94324	0.00516	0.86771	0.00803	0.74109	0.00880	0.57732	0.00272
k02	0.99501	0.00008	0.98533	0.00023	0.95178	0.00078	0.87002	0.00155	0.75560	0.00090	0.64300	-0.00305	0.56365	-0.00703
k03	0.99188	0.00019	0.98242	0.00052	0.96545	0.00115	0.93660	0.00200	0.89493	0.00280	0.84024	0.00155	0.78627	-0.00283
k05	0.99808	0.00015	0.99444	0.00043	0.98361	0.00114	0.95473	0.00263	0.89125	0.00511	0.77406	0.00763	0.61517	0.00595
k06	0.99536	0.00015	0.98865	0.00034	0.96971	0.00083	0.92473	0.00164	0.84128	0.00247	0.71864	0.00087	0.61210	0.00010
k07	0.99452	0.00031	0.99010	0.00059	0.98075	0.00107	0.96086	0.00157	0.92252	0.00145	0.85035	-0.00080	0.74457	-0.00555
k08	0.99737	0.00038	0.99269	0.00095	0.98136	0.00176	0.95571	0.00298	0.91088	0.00426	0.83130	0.00527	0.69829	0.00666
k11	0.99482	0.00028	0.98655	0.00067	0.96532	0.00127	0.91783	0.00214	0.84478	0.00142	0.76196	-0.00031	0.66883	-0.00503
k12	0.99110	0.00020	0.97866	0.00042	0.95682	0.00083	0.92331	0.00111	0.89056	0.00117	0.85733	0.00099	0.81379	-0.00187
k13	0.99805	0.00007	0.99442	0.00019	0.98139	0.00053	0.93923	0.00123	0.84021	0.00153	0.67614	-0.00186	0.49508	-0.00777
k14	0.99661	0.00010	0.98994	0.00028	0.97108	0.00072	0.92420	0.00131	0.83555	0.00043	0.71927	-0.00351	0.58296	-0.01225
k15	0.99275	0.00017	0.98407	0.00026	0.96894	0.00068	0.94086	0.00142	0.90375	0.00185	0.85833	0.00106	0.80702	-0.00049
k16	0.99331	-0.00004	0.98418	-0.00005	0.96285	-0.00011	0.91732	-0.00047	0.84069	-0.00135	0.74781	-0.00335	0.65946	-0.00897
k20	0.99266	0.00012	0.98866	0.00020	0.97924	0.00030	0.95427	0.00047	0.90503	-0.00029	0.85874	-0.00133	0.81152	-0.00237
k21	0.99262	0.00007	0.98690	0.00025	0.97717	0.00053	0.95577	0.00103	0.91382	0.00182	0.84091	0.00163	0.74318	-0.00203
k22	0.99415	0.00006	0.98579	0.00012	0.96452	0.00026	0.91378	-0.00016	0.82362	-0.00229	0.71706	-0.00778	0.62065	-0.01467
k23	0.99122	-0.00056	0.98422	-0.00092	0.97129	-0.00162	0.94555	-0.00291	0.90752	-0.00497	0.86277	-0.00770	0.81030	-0.00943
k24	0.99620	0.00024	0.99028	0.00054	0.97486	0.00113	0.93799	0.00191	0.85555	0.00213	0.73588	-0.00039	0.58894	-0.01315
k04	0.99329	-0.00016	0.98424	-0.00042	0.96570	-0.00098	0.92860	-0.00179	0.86661	-0.00295	0.78177	-0.00573	0.69493	-0.00935
k09	0.99097	0.00022	0.98611	0.00041	0.97816	0.00075	0.96182	0.00125	0.92696	0.00132	0.86711	0.00144	0.78502	-0.00182
k10	0.99198	0.00007	0.98368	0.00009	0.96899	0.00004	0.94139	-0.00020	0.89478	-0.00067	0.81985	-0.00315	0.72914	-0.00769
k17	0.99421	0.00013	0.98443	0.00031	0.96673	0.00036	0.93235	0.00020	0.87392	-0.00140	0.79433	-0.00467	0.69088	-0.01134
k18	0.99589	0.00012	0.98830	0.00032	0.97295	0.00073	0.93719	0.00127	0.85561	0.00123	0.70694	-0.00226	0.54630	-0.01039
k19	0.99318	-0.00006	0.98357	-0.00018	0.96557	-0.00039	0.92249	-0.00078	0.84125	-0.00251	0.77152	-0.00393	0.70107	-0.00336
RMS	0.99426	0.00022	0.98707	0.00048	0.97095	0.00100	0.93520	0.00189	0.87188	0.00285	0.78502	0.00417	0.68746	0.00758

Gaussian blur

TABLE III. ACCURACY OF THE PROPOSED METHOD FOR COMPUTING SSIM: GAUSSIAN BLUR, 1536X1024 IMAGES.

File	sigma=0.5		sigma=0.7		sigma=1		sigma=3		sigma=5		sigma=10		sigma=15	
	SSIM	Delta	SSIM	Delta	SSIM	Delta	SSIM	Delta	SSIM	Delta	SSIM	Delta	SSIM	Delta
k01	0.98720	0.00048	0.94682	0.00165	0.87318	0.00211	0.55327	-0.01726	0.47744	-0.03227	0.44126	-0.02791	0.43598	-0.02557
k02	0.98573	0.00008	0.94714	0.00007	0.88935	-0.00093	0.68282	-0.01827	0.64281	-0.01764	0.62244	-0.01382	0.61872	-0.01157
k03	0.99402	0.00002	0.97981	-0.00001	0.95905	-0.00053	0.86614	-0.01306	0.83851	-0.01443	0.82062	-0.01167	0.81688	-0.00989
k05	0.99394	0.00013	0.97588	0.00023	0.93818	-0.00074	0.66111	-0.02633	0.55650	-0.03670	0.49014	-0.02812	0.47903	-0.02371
k06	0.99006	0.00021	0.95896	0.00061	0.90340	0.00021	0.65718	-0.01601	0.60000	-0.02167	0.57249	-0.01801	0.56856	-0.01613
k07	0.99494	-0.00008	0.98365	-0.00039	0.96785	-0.00138	0.87293	-0.01663	0.80660	-0.01403	0.74749	-0.00715	0.73933	-0.00321
k08	0.98452	0.00052	0.93801	0.00147	0.86230	0.00079	0.54442	-0.02261	0.45929	-0.04163	0.40624	-0.03386	0.39683	-0.02919
k11	0.98950	0.00015	0.95933	0.00030	0.90901	-0.00057	0.70088	-0.01919	0.64987	-0.02343	0.61996	-0.01886	0.61386	-0.01632
k12	0.99447	0.00001	0.98034	-0.00010	0.95877	-0.00091	0.86787	-0.01407	0.84303	-0.01567	0.82811	-0.01359	0.82542	-0.01226
k13	0.98144	0.00029	0.92398	0.00077	0.82716	-0.00023	0.46356	-0.01772	0.38538	-0.02603	0.34533	-0.01965	0.33909	-0.01612
k14	0.99087	-0.00001	0.96487	-0.00034	0.91966	-0.00214	0.69399	-0.02678	0.62321	-0.02971	0.57784	-0.02213	0.56904	-0.01755
k15	0.99268	-0.00004	0.97245	-0.00028	0.94195	-0.00129	0.82807	-0.01410	0.79545	-0.01633	0.76964	-0.01186	0.76280	-0.00892
k16	0.99004	0.00012	0.96061	0.00036	0.91245	-0.00006	0.73105	-0.01430	0.69283	-0.01578	0.67404	-0.01293	0.67084	-0.01125
k20	0.99160	0.00004	0.97006	-0.00001	0.93853	-0.00067	0.82382	-0.01119	0.79265	-0.01426	0.77086	-0.01084	0.76631	-0.00903
k21	0.98786	0.00009	0.95579	0.00006	0.90823	-0.00114	0.72230	-0.01587	0.67120	-0.02187	0.64053	-0.01709	0.63514	-0.01424
k22	0.99040	0.00002	0.96446	-0.00006	0.92320	-0.00102	0.74711	-0.01904	0.69702	-0.01675	0.66932	-0.01154	0.66455	-0.00843
k23	0.99399	-0.00016	0.98079	-0.00059	0.96404	-0.00143	0.89616	-0.01090	0.87084	-0.00964	0.85306	-0.00616	0.84902	-0.00367
k24	0.99288	0.00000	0.97165	-0.00029	0.93133	-0.00191	0.70978	-0.02570	0.64305	-0.02919	0.60436	-0.02300	0.59750	-0.01931
k04	0.99146	-0.00007	0.96870	-0.00040	0.93370	-0.00161	0.78886	-0.01777	0.74753	-0.01971	0.71973	-0.01498	0.71366	-0.01167
k09	0.98837	0.00007	0.96191	0.00007	0.93092	-0.00059	0.82522	-0.01349	0.78759	-0.01683	0.76389	-0.01334	0.76003	-0.01129
k10	0.98907	0.00002	0.96433	-0.00015	0.93486	-0.00116	0.82576	-0.01746	0.78687	-0.01906	0.76038	-0.01491	0.75543	-0.01235
k17	0.98826	-0.00022	0.96069	-0.00095	0.92650	-0.00267	0.80626	-0.01901	0.76054	-0.01877	0.72108	-0.01130	0.71121	-0.00627
k18	0.98254	0.00003	0.93664	-0.00016	0.87364	-0.00162	0.63151	-0.02020	0.55425	-0.01938	0.50747	-0.01122	0.49986	-0.00686
k19	0.98872	0.00011	0.95763	0.00024	0.90834	-0.00040	0.71598	-0.01373	0.66602	-0.02025	0.63962	-0.01697	0.63520	-0.01502
RMS	0.98978	0.00018	0.96197	0.00058	0.91876	0.00127	0.74227	0.01805	0.69289	0.02260	0.66235	0.01758	0.65678	0.01476

Additive noise

TABLE IV. ACCURACY OF THE PROPOSED METHOD FOR COMPUTING SSIM: NOISE, 1536X1024 IMAGES.

1	File	p=0.00001		p=0.0005		p=0.001		p=0.005		p=0.01		p=0.05		p=0.1	
		SSIM	Delta	SSIM	Delta	SSIM	Delta	SSIM	Delta	SSIM	Delta	SSIM	Delta	SSIM	Delta
	k01	0.99903	0.00001	0.99429	0.00016	0.98857	0.00039	0.94685	0.00179	0.90066	0.00308	0.66301	0.00715	0.51428	0.00692
ŀ	k02	0.99760	0.00001	0.98705	0.00002	0.97412	0.00003	0.87685	-0.00020	0.77454	-0.00089	0.35328	-0.00377	0.19618	-0.00228
ŀ	k03	0.99837	0.00001	0.99119	0.00001	0.98273	0.00000	0.91882	-0.00026	0.85090	-0.00082	0.54850	-0.00307	0.40787	-0.00254
I	k05	0.99842	0.00006	0.99118	0.00025	0.98250	0.00049	0.91927	0.00181	0.85094	0.00298	0.53878	0.00301	0.38195	0.00123
I	k06	0.99826	0.00001	0.99119	0.00007	0.98259	0.00016	0.91792	0.00045	0.84912	0.00064	0.55184	0.00166	0.40942	0.00264
ŀ	k07	0.99865	-0.00002	0.99349	-0.00013	0.98663	-0.00016	0.93714	-0.00113	0.88169	-0.00216	0.60637	-0.00724	0.45282	-0.00830
ŀ	k08	0.99896	0.00002	0.99328	0.00019	0.98633	0.00038	0.93630	0.00179	0.88357	0.00291	0.62646	0.00496	0.47785	0.00392
ŀ	k11	0.99867	0.00002	0.99314	0.00007	0.98642	0.00012	0.93822	0.00043	0.88717	0.00061	0.66258	0.00104	0.54117	0.00104
ŀ	k12	0.99751	0.00000	0.98667	-0.00001	0.97341	0.00000	0.87508	-0.00028	0.77109	-0.00092	0.34640	-0.00354	0.19323	-0.00192
ŀ	k13	0.99898	0.00002	0.99486	0.00006	0.98993	0.00014	0.95029	0.00065	0.90515	0.00102	0.66921	0.00215	0.51826	0.00206
ŀ	k14	0.99835	-0.00001	0.99190	0.00001	0.98361	0.00005	0.92031	0.00020	0.85224	0.00008	0.54490	-0.00125	0.39510	-0.00142
ł	k15	0.99692	-0.00003	0.98302	-0.00014	0.96643	-0.00027	0.84714	-0.00163	0.72546	-0.00347	0.29058	-0.00677	0.16568	-0.00320
ŀ	k16	0.99860	0.00000	0.99306	0.00003	0.98600	0.00005	0.93347	0.00011	0.87764	0.00007	0.61034	-0.00076	0.46907	-0.00058
ŀ	k20	0.99688	-0.00003	0.98238	-0.00016	0.96519	-0.00031	0.84397	-0.00179	0.72177	-0.00360	0.30715	-0.00476	0.19120	-0.00147
ł	k21	0.99884	0.00001	0.99381	0.00003	0.98732	0.00010	0.94062	0.00049	0.88761	0.00066	0.61701	-0.00006	0.45622	-0.00111
ŀ	k22	0.99861	0.00000	0.99279	0.00001	0.98596	0.00000	0.93262	-0.00023	0.87467	-0.00061	0.58993	-0.00272	0.43961	-0.00260
ŀ	k23	0.99810	-0.00001	0.98975	-0.00013	0.98002	-0.00027	0.90565	-0.00137	0.82478	-0.00265	0.47568	-0.00734	0.32576	-0.00627
ŀ	k24	0.99842	0.00003	0.99199	0.00007	0.98442	0.00012	0.92877	0.00050	0.86804	0.00065	0.58666	0.00007	0.43818	-0.00065
ŀ	k04	0.99837	0.00000	0.99075	-0.00003	0.98146	-0.00005	0.91511	-0.00056	0.84378	-0.00128	0.52395	-0.00479	0.37573	-0.00494
-	k09	0.99852	0.00001	0.99229	0.00004	0.98434	0.00007	0.92621	0.00013	0.86374	0.00007	0.56167	-0.00171	0.40668	-0.00218
ŀ	k10	0.99875	0.00001	0.99389	-0.00001	0.98791	0.00003	0.94274	0.00005	0.89303	-0.00014	0.64885	-0.00223	0.51264	-0.00324
ŀ	k17	0.99745	-0.00003	0.98754	-0.00018	0.97569	-0.00036	0.88805	-0.00184	0.79812	-0.00363	0.44390	-0.00773	0.30673	-0.00594
ŀ	k18	0.99816	-0.00001	0.99028	-0.00002	0.97994	-0.00009	0.90481	-0.00068	0.82380	-0.00151	0.46808	-0.00462	0.30914	-0.00354
ļ	k19	0.99885	0.00002	0.99384	0.00013	0.98743	0.00026	0.94086	0.00109	0.88889	0.00172	0.62521	0.00182	0.47511	0.00021
R	RMS	0.99830	0.00002	0.99099	0.00011	0.98206	0.00022	0.91659	0.00103	0.84732	0.00193	0.54743	0.00423	0.40514	0.00360

Consequences & Applications

Main topics:

- Relationship between SSIM and other objective metrics
- Boosting SSIM scores by LF/HF noise-shaping and pre-filtering
- More sophisticated models based on SSIM

Relation to other objective metrics

Symmetric 2-band definition

Full formula: $SSIM(x, y) \approx \xi(x_L, y_L) \cdot \xi(x_H, y_H)$ where: $\xi(x, y) = \frac{2E[xy]+C}{E[x^2]+E[y^2]+C}$

Connection to MSE:

- Let's expand: $\frac{1}{\xi(x,y)} = \frac{E[x^2] + E[(x+(y-x))^2]}{2E[xy]} = 1 + \frac{E[(y-x)^2]}{2E[xy]}$
- Consequently: $\frac{1-\xi(x,y)}{\xi(x,y)} = \frac{MSE(x,y)}{2E[xy]}$ refinement of result of [Hoare & Zhou, 2010]
- Problem: one still needs to know covariance E[xy] to connect to MSE/PSNR!

Connection to SNR:

- Let's expand it differently : $\xi(x, y) = 1 \frac{E[(y-x)^2]}{E[x^2] + E[y^2]}$
- Consequently: $\frac{1}{1-\xi(x,y)} = SNR(x,y) + SNR(y,x)$
- Full formula for patch-level SSIM: $SSIM(x, y) \sim \left(1 \frac{1}{SNR(x_L, y_L) + SNR(y_L, x_L)}\right) \times \left(1 \frac{1}{SNR(x_H, y_H) + SNR(y_H, x_H)}\right)$
- NB: SSIM can be computed as a composite of SNR values computed for low-pass and high-pass images!
- So the connection to other objective metrics such as SNR or PSNR exits, but it is not that simple!

BRIGHT

 $\xi(x_L, y_L)$

SSIM

BRIGHTCOVE BOOSTING SSIM scores by pre-filtering

The game of balancing errors:

- Idea: distribute the errors between LF and HF bands such that $SSIM(x, y) \approx \xi(x_L, y_L) \cdot \xi(x_H, y_H)$ is maximal.
- If errors are tradeable, then one can show that: $\max_{\delta: \xi_L = \xi_0 + \delta, \xi_H = \xi_0 \delta} SSIM(\xi_L, \xi_H) \Rightarrow \delta = 0 \Rightarrow \xi_L = \xi_H.$

Simple practical solution: apply unsharp mask filter!

Effects as visible in uncompressed image:

Original image

After unsharp mask

The same images after H.264/Intra encoding with QP=42:

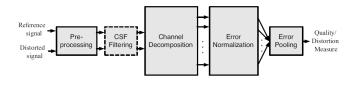
Original H.264 encoded QP=42 MS-SSIM=0.9275

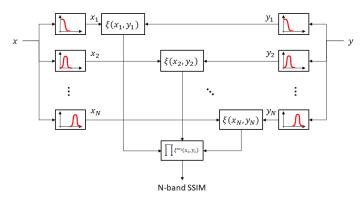
After unsharp mask H.264 QP=42 MS-SSIM=0.9390

Credit: Luc Trudeau : https://medium.com/ @luc.trudeau/a-pre-processing-filter-for-ssim-a60ce91f3374

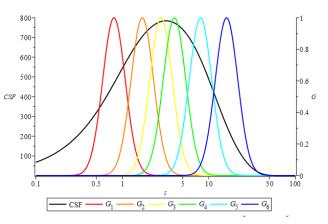
Back to error visibility?

Extend SSIM model to N bands:


N-band SSIM:


$$SSIM(x,y) = \prod_{i=1}^{N} (\xi(x_i, y_i))^{w_i}, \qquad \xi(x,y) = \frac{2E[xy] + C}{E[x^2] + E[y^2] + C}$$

- where:
 - x_i, y_i are band-filtered versions of input images,
 - w_i are perceptual weights applied to band-level scores,
 - C is a small constant.


Natural extension of SSIM:

- Uses the same atomic patch-level measures as SSIM
- Subbands that can be defined in angular units, aligned with CSF model (unlike MS-SSIM, which operates at fixed pixel-level scales)
- Connects well to perceptual science: Barten CSF modes, SQRI, Sarnoff JND model, VDP, etc. Back to the starting point for SSIM!

CONCLUSIONS

© Brightcove Inc. All Rights Reserved.

Summary & Outlook

New model for computing SSIM is introduced

Uses 2-band decomposition + symmetric processing in each band

It works

- Matches the original SSIM model under
 - Codec noise
 - Resolution changes
 - Gaussian blur
 - Additive noise

Utilities

- Methodological
- Enables encoder and filter optimizations
- Explains connection to other objective metrics (SNR, PSNR, MSE)
- Brings us back to perceptual models!

Next steps

- N-band SSIM this promises to be a lot of fun!
- Parametric quality models returnable to different screen sizes, SDR/HDR, etc. Much needed for multi-screen!

THANK YOU

© Brightcove Inc. All Rights Reserved.