
Compressing Feature Sets with Digital Search Trees

Vijay Chandrasekhar
Stanford University

Yuriy Reznik
Qualcomm Inc.

Gabriel Takacs
Stanford University

David M. Chen
Stanford University

Sam S. Tsai
Stanford University

Radek Grzeszczuk
Nokia Inc.

Bernd Girod
Stanford University

Abstract

State-of-the-art image retrieval pipelines are based on
“bag-of-words” matching. We note that the original order
in which features are extracted from the image is discarded
in the “bag-of-words” matching pipeline. As a result, a set
of features extracted from a query image can be transmitted
in any order. A set of m unique features has m! orderings,
and if the order of transmission can be discarded, one can
reduce the query size by an additional log2(m!) bits. We
propose a coding scheme based on Digital Search Trees that
reduces size of a set of features by approximately log2(m!)
bits. We perform analysis of the scheme, and show how
it applies to any set of symbols in which order can be dis-
carded. We illustrate how the scheme can be applied to a set
of low bitrate Compressed Histogram of Gradients (CHoG)
descriptors.

1. Introduction

Mobile visual applications allow users to use their cam-
era phone to initiate search queries about objects in their
visual proximity. Such applications can be used, e.g., for
identifying products, comparison shopping, finding infor-
mation about movies, CDs, real estate, print media or art-
works. First commercial deployments of such systems in-
clude Google Goggles [14], Nokia Point and Find [23],
Kooaba [21], Ricoh iCandy [12, 15, 16] and Amazon Re-
members [4].

Feature compression has been identified as one of the
key issues for reducing latency in such mobile visual search
and augmented reality applications. The size of the data
sent over the network needs to be as small as possible to
offer an interactive and responsive user experience. Prior
work in the field has shown that extracting descriptors on
the mobile device and transmitting compressed descriptors
can reduce query latency significantly [8]. Several com-
pression schemes have been proposed in recent literature.
The Compressed Histogram of Gradients (CHoG) descrip-

Figure 1. Typical query image with m features. Note that the features in
the image can be transmitted in any order. As a result, by clever ordering
of the feature set, one can reduce the query size by log2(m!) bits.

tor [8], Binary Robust Independent Elementary Features
(BRIEF) [5], Product Quantized SIFT descriptors [17] are
some examples of low bitrate descriptors.

The focus of prior work on feature compression has been
primarily around compressing each individual descriptor to
obtain a compact representation. Readers are referred to [8]
for a detailed survey of low bitrate descriptors. In this
work, we study the problem of compressing a set of fea-
tures jointly. In particular, we are interested in the problem
where the order in which data are transmitted does not mat-
ter, as in the case of local image features.

State-of-the-art image retrieval pipelines are commonly
based on “bag-of-words” matching, i.e., query features are
vector-quantized and histograms of query and database fea-
tures are compared to obtain a ranked list of database im-
ages [22]. We note that the original order in which features
are extracted is discarded. As a result, a set of features ex-
tracted from a query image can be transmitted in any order.
A set of m unique features has m! orderings, and if the or-
der of transmission can be discarded, we should be able to
reduce the query image size by an additional log2(m!) bits.

1

2011 IEEE International Conference on Computer Vision Workshops
978-1-4673-0063-6/11/$26.00 c©2011 IEEE

32

In prior work on compressing feature sets, Chen et al. [9]
notice that a tree-based representation can be used to discard
the order of elements stored in it. Chen et al. propose stor-
ing a vocabulary tree [22] on the mobile device and com-
puting the “bag-of-words” histogram locally. Run-length
encoding of the non-zero bins in the histogram results in a
significant reduction in query size. One drawback of this
approach is that it requires the dictionary to be stored on the
mobile device, which might not be feasible on RAM con-
strained devices. Tsai et al. [29] propose an ordering on fea-
tures based on their x, y locations in the image. A histogram
map is generated based on feature locations. The histogram
map is then encoded efficiently to reduce the query size.

The problem of constructing codes for unordered sets
was first considered in [25]. Here, we extend the approach
proposed in [25]. We use Digital Search Trees (DST) for
compressing visual feature descriptors. We show how DST
based techniques can be used to reduce query size by ap-
proximately log2(m!) bits. We show that the scheme works
for arbitrary input sources and does not require a dictionary
to be stored on the mobile device.

1.1. Outline

In Section 2, we describe the DST algorithm for com-
pressing a binary input sequence. We analyse the perfor-
mance of the scheme. We also show how the scheme ap-
plies to input sources with arbitrary source statistics. In
Section 3, we illustrate how the DST coding scheme can
be applied to compressing sets of variable bitrate CHoG de-
scriptors. Conclusions are provided in Section 4.

2. Compressing a set of words
In Section 2.1, we describe the compression problem for

a set of fixed-length words produced by a symmetric memo-
ryless source. In Section 2.2, we discuss how a set of input
words can be organized into a DST and discuss different
schemes for representing DSTs efficiently. Next, we dis-
cuss the compression and decompression algorithms for our
problem in Section 2.3. Finally, in Section 2.5, we describe
how the DST coding scheme can be used for arbitrary input
sources.

2.1. Problem description

Let {f1, . . . , fm} be a set of words that we need to en-
code. For simplicity, we first assume that these words are bi-
nary, distinct, have the same length |fi| = n, and produced
by a symmetric memoryless source (we relax these assump-
tions in subsequent sections). In this model, characters “0”
and “1” appear with same probability p = 1 − p = 1/2
regardless of their positions or order. The entropy rate of
such source is 1 bit/character [10], implying, that conven-
tional sequential encoding of words f1, . . . , fm will cost at
least mn bits. Hereafter, we will often refer to an example

Table 1. Example set of binary words {f1, . . . , fm}.

Index Word DST Prefix Suffix
i fi pi si
1 01011 0 1011
2 00111 00 111
3 10001 1 0001
4 01010 01 010
5 10010 10 010
6 00001 000 01
7 00110 001 10
8 00000 0000 0

Bits: 8× 5 = 40 18 22

set of words shown Table 1 (second column). In this case:
m = 8, n = 5, and total length mn = 8× 5 = 40 bits. We
show how tree-based representations can be used to reduce
the number of bits.

2.2. Tree based representation

In order to construct a more compact representation of
the set {f1, . . . , fm}, we employ a data structure known as
Digital Search Tree [11, 13, 20]. We start with a single root
node, and assume that it corresponds to an empty word. We
then pick our first word f1, and depending on the value of
its first character, we add a left or right branch to the root
node, and insert a new node there. We also store a pointer to
f1 in that node. With second and subsequent words, we tra-
verse the tree starting from the root node by following their
characters. Once we hit a leaf (a node with no continuation
in the direction of interest), we extend the DST by creating
a new node and storing a pointer to the current word in it.
This process is repeated m times, so that all words from our
input set {f1, . . . , fm} are inserted.

The DST structure constructed over our example set is
shown in Figure 2. The paths from root to other nodes in
the tree correspond to portions (prefixes) of words inserted
in this structure. We list such prefixes in the third column in
Table 1. The fourth column in Table 1 lists the remainders
(suffixes) of each word. We observe that DST construction
effectively “splits” words fi (i = 1, . . . ,m) in two parts:

fi = pi si,

where pi are prefixes covered by paths in the tree, and si are
the remaining suffixes. Overall lengths of prefixes and the
suffixes will be denoted by

Pm =

m∑
i=1

|pi|, and Sm =

m∑
i=1

|si| = mn− Pm (1)

correspondingly. In our example, shown in Table 1, the
overall DST path length is Pm = 18, and the length of the
remaining suffixes is Sm = 40− 18 = 22.

33

Figure 2. DST construction. Illustration of how a DST structure is con-
structed over our example set of words f1, . . . , f8. For m features, the tree
has m+1 internal nodes and m+2 external nodes. Each word or feature
corresponds to an internal node in the tree. The prefixes and suffixes for
each word are shown in blue and black respectively.

In passing, we note that the order in which words
{f1, . . . , fm} are inserted may affect the number of char-
acters that become “absorbed” by the tree. However, it does
not change the average statistics of the tree (such as the ex-
pected path length EPn), which we will show is key to
achieving the log(m!) ordering gain.

Our next task is to encode the structure of the DST ef-
ficiently. More specifically, we need to encode the shape
of the binary tree. This tree contains i = m + 1 nodes:
m nodes associated with input words + one root node. We
further add external or leaf nodes to the tree, as shown in
Figure 2. This results in a tree with m+1 internal nodes or
m+ 2 external nodes. We discuss two different techniques
for representing the tree structure.

2.2.1 Tree traversal

One simple technique for representing the tree is to scan it
recursively using pre-order tree traversal [26], and assign-
ing labels “1” to the internal nodes, and “0” to external
ones (see Figure 3). Such a sequence contains 2i + 1 dig-
its, and serves as a unique representation of a tree with i
nodes [19, 30]. We call the resulting sequence of labels an
x-sequence. The x-sequence may serve as a code to repre-
sent the DST, but we show how a more compact represen-
tation can be achieved. For the example in Figure 2, a pre-
order travel produces the sequence 1111100010010011000,
with 1 and 0 representing internal and external nodes re-
spectively.

In general, it is known, that the total number of possi-
ble rooted binary trees with i internal nodes is given by the
Catalan number [19]:

Ci =
1

i+ 1

(
2i

i

)
, (2)

implying, that a tree can be uniquely represented by only

⌈log2 Ci⌉ ∼ 2 i− 3
2 log2 i+O (1) [bits]. (3)

We next briefly describe one possible coding technique [30]
that achieves this rate.

2.2.2 Zaks tree enumeration algorithm

The Zaks tree enumeration algorithm is used to generate
an index of the tree structure. The algorithm is briefly re-
produced here, and for more details, readers are referred
to [30]. Given an x-sequence for a tree, we produce a
list of positions of symbols “1” in it. We will call it a
z-sequence z = z1, . . . , zi. For example, for a sequence
x = 1111100010010011000, corresponding to a tree in Fig-
ure 3, we produce: z = 1, 2, 3, 4, 5, 9, 12, 15, 16. We next
define a rule for incremental reduction of z-sequences. Let
j∗ be the largest j, such that zj = j. By z∗ = z∗1 , . . . , z

∗
i−1

we will denote a new sequence that omits value zj∗ , and
subtracts 2 from all subsequent values in the original se-
quence:

z∗j =

{
zj , j = 1, . . . , j∗ − 1;
zj+1 − 2, j > j∗.

Then, a lexicographic index (or Zaks rank) of a tree is re-
cursively computed as follows [30]:

index(z) =

{
1, if j∗ = i;
ai,j∗ + index(z∗), if j∗ < i,

(4)

where

ai,j =
j + 2

2i− j

(
2i− j

i− j − 1

)
, 0 6 j 6 i− 1

are some constants (see Table 2).
For example, for the tree in Figure 3, Zaks ranking algo-

rithm (4) produces:

index(1, 2, 3, 4, 5, 9, 12, 15, 16) = a9,5 + index(1, 2, 3, 4, 7, 10, 13, 14)

index(1, 2, 3, 4, 7, 10, 13, 14) = a8,4 + index(1, 2, 3, 5, 8, 11, 12)

index(1, 2, 3, 5, 8, 11, 12) = a7,3 + index(1, 2, 3, 6, 9, 10)

index(1, 2, 3, 6, 9, 10) = a6,3 + index(1, 2, 4, 7, 8)

index(1, 2, 4, 7, 8) = a5,2 + index(1, 2, 5, 6)

index(1, 2, 5, 6) = a4,2 + index(1, 3, 4)

index(1, 3, 4) = a3,1 + index(1, 2)

index(1, 2) = 1;

resulting in

index(1, 2, 3, 4, 5, 9, 12, 15, 16) = a9,5 + a8,4 + a7,3 + a6,3

+a5,2 + a4,2 + a3,1 + 1

= 154 + 110 + 75 + 20

+14 + 4 + 3 + 1

= 381.

34

Table 2. Coefficients ai,j used in lexicographic enumeration of trees.

ij 0 1 2 3 4 5 6 7 8
1 1
2 2 1
3 5 3 1
4 14 9 4 1
5 42 28 14 5 1
6 132 90 48 20 6 1
7 429 297 165 75 27 7 1
8 1430 1001 572 275 110 35 8 1
9 4862 3432 2002 1001 429 154 44 9 1

The code of this tree is a ⌈log2 Cm+1⌉ = ⌈log2 C9⌉ = 13
bits-long binary record of its index:

Bin⌈log2 Cm+1⌉(index) = Bin13(381) = 0000101111101.

As easily observed, this code is shorter than the 2i+1 = 19
bits required for the pre-order traversal representation.

We are now ready to describe the remaining steps in our
coding scheme for sets of words.

2.3. Compression and Decompression Algorithms

Given a set of m words {f1, . . . , fm}, the proposed al-
gorithm performs the following operations:

1. Build, encode, and transmit DST structure over the in-
put set {f1, . . . , fm}.

2. Scan the tree recursively, and define a canonical order
of nodes and the corresponding prefixes pi1 , . . . , pim
in the DST.

3. Encode and transmit suffixes according to same order
si1 , . . . , sim .

The construction of the DST structure and its encoding
is performed as discussed in previous sections. To define a
canonical order of nodes we use the standard pre-order tree
traversal [26], and assign each node a serial number, starting
with 0, assigned to the root node (see Figure 3). As we reach
a j-th node during the traversal, we can also recover the
prefix of a word fij that was inserted in it. This produces an
order i1, . . . , im in which prefixes of all words from our set
can be retrieved from the tree. We omit the root node in this
sequence. For example, for a tree in Figure 2, this produces
the ordering i1 = 1, i2 = 2, i3 = 6, i4 = 8, i5 = 7, i6 =
4, i7 = 3, i8 = 5. In order to transmit information about
corresponding suffixes, we simply arrange and encode them
in the same order: si1 , . . . , sim . Any standard source coding
technique (such as Shannon, Huffman, or arithmetic codes)
can be applied for this sequence.

The decoder performs the following inverse operations:

Figure 3. DST compression. Once the DST is constructed, the word set
can be fully represented by (1) the structure of the tree, and (2) an ordered
set of suffixes. Note that the structure of the tree captures the prefixes of
all the words. For (1), the DST can be represented by a pre-order traversal.
A pre-order travel produces the sequence 1111100010010011000, with 1
and 0 representing internal and external nodes respectively. The order of
the traversal is indicated within each node. A more compact representation
of the tree structure can be obtained by computing an index of the tree in
the space of all possible trees with m+2 external nodes, using the Zaks al-
gorithm. For (2), the pre-order traversal imposes an ordering on the words,
and the corresponding reordered suffixes, s1, s2, s6, s8, s7, s4, s3, s5 are
shown below the tree.

1. Decode the DST tree structure.

2. Scan nodes in the same order as encoder, and retrieve
prefixes pi1 , . . . , pim .

3. Sequentially decode corresponding suffixes
si1 , . . . , sim , and form complete decoded words:
fij = pij sij , j = 1, . . . ,m.

We conclude our presentation of the algorithm by show-
ing a complete code constructed for our example set of
words (see Table 1, and Figures 2, 3, 4).

Code({f1, . . . , fm}) = Bin⌈Cm+1⌉(index), si1 , . . . , sim

= Bin⌈C9⌉(381), s1, s2, s6,

s8, s7, s4, s3, s5

= 0000101111101, 1011, 111, 01,

0, 10, 010, 0001, 010.

35

Figure 4. Decoding the DST coded data. First, the pre-order tree traversal
code or Zaks index is used to reconstruct the tree. Next, the pre-order
traversal of the tree is used to generate the prefixes of the features. The
prefixes are combined with the corresponding suffixes to generate the final
set of features (reordered).

As evident, the length of this code is 13 + 22 = 35 bits,
which is by 40 − 35 = 5 bits shorter than the length of a
straightforward sequential encoding of words in this set.

Next, we analyze the performance of the DST coding
scheme.

2.4. Performance Analysis

Let us assume that input words {f1, . . . , fm} are pro-
duced by a general (not necessarily symmetric) binary
memoryless source, emitting “0”s and “1”s with probabili-
ties p and q = 1 − p correspondingly. By t we will denote
the total length of words in our set:

t = |f1, . . . , fm| . (5)

If we apply conventional code such as Shannon, Huff-
man, or arithmetic code for a sequence of words f1, . . . , fm,
then we know that its average length will satisfy [10]:

L̄sequence (t) = H t+O(1), (6)

where
H = −p log2 p− q log2 q, (7)

is the entropy of the source [10].
Consider now encoding produced by our DST-based al-

gorithm. Here we further assume that:

1

logm
min{|w1|, . . . , |wm|} > 1

− logmax{p, q}
.

This condition implies that our words {w1, . . . , wm} are
longer that the height (longest path) of random DST [24],
and so they can be uniquely parsed.

Recall, that our code consists of 2 parts: (1) encoded
DST structure, occupying at most

LDST = ⌈log2 Cm+1⌉ 6 log2 Cm+1 + 1

bits, and (2) encoded sequence of suffixes. When Shannon
or Huffman codes [10] are used to encode suffixes, this pro-
duces at most

Lsuff(Sm) 6 H Sm + 1

bits, where Sm is the total length of all suffixes, and H is
the entropy of the source. Consequently, the average length
of a code for suffixes, will satisfy

ELsuff(Sm) 6 H S̄m + 1,

where S̄m = ESm, is the expected length of suffixes in our
set. In turn, S̄m can be expressed as S̄m = t − P̄m, where
P̄m = EPm is the expected path length in the DST.

We next employ the result for the expected path length
in a DST [13, 18, 27]:

P̄m =
m

H
[log2m+A+ δ1(m)] +O (logm) , (8)

where H is the entropy of the source, A is another known
constant depending only on source parameter p, and δ1(n)
is a zero-mean oscillating function of small magnitude.

By plugging this result in the expression for code length
of DST-based code, we obtain

L̄set (m, t)

= LDST +ELsuff(Sm) (9)
6 log2 Cm+1 +H S̄m + 2

= log2 Cm +H
(
t− P̄m

)
+ 2

= 2m+O(logm) +H t

−H
[m
H

(log2m+A+ δ1(m))
]

(10)

= H t−m log2m+m [2−A− δ1(m)] +O(logm)

and by further observing that

log2m! = m log2m− 1

ln 2
m+O (logm)

we can conclude that

L̄set (m, t) = H t− log2m! +O(m) . (11)

In other words, we observe that for a memoryless model,
the use of DST-coding leads to savings of approximately
log2m! bits.

2.5. Extension to Arbitrary or Unknown Sources

From analysis of DST and other random digital trees it
is known that their expected path length P̄m asymptotically
(with large number of words m) approaches

P̄m

m
∼ 1

H
logm (12)

36

where H is the entropy of source generating input words.
This result is valid for a broad variety of sources, including
memoryless, Markov, and ψ-mixing sources [28].

It turns out that this is also the reason why our DST-
based scheme achieves close to log2m! saving in rate. This
follows from the cancellation of factorsH in Equation (10).

This means, that proposed DST-based scheme should
work well under many different stochastic models of input
sequences. It will automatically adapt to parameters of such
sources by correspondingly changing the shape of the tree.

Finally, we show how the DST coding scheme can be
applied for jointly encoding a set of Compressed Histogram
of Gradients [7] descriptors.

3. Application to CHoG features
The DST coding scheme can be applied to any set of lo-

cal feature descriptors. Here, we illustrate how it can be
applied for jointly encoding a set of CHoG descriptors [8].
Note that we restrict our discussion to encoding of feature
descriptor data. The location data associated with descrip-
tors can be transmitted using standard variable-length en-
coding schemes, once feature descriptors are transmitted.
First, we briefly review the structure of the CHoG descrip-
tor and how it is computed.

3.1. CHoG Feature Structure

The pipeline for computing CHoG descriptors is shown
in Figure 5. We first start with patches obtained from in-
terest points (e.g., corners, blobs) at different scales. The
patches at different scales are oriented along the dominant
gradient. Next, we divide the scaled and oriented canonical
patches into log-polar spatial bins. Then, we perform inde-
pendent quantization of histograms in each spatial bin. The
histogram in each spatial bin is quantized using Huffman
Trees, Type Coding or Vector Quantization, and mapped to
an index [8]. The resulting indices are then encoded using
variable length codes, based on their different probabilities.
The final bitstream of the feature descriptor is obtained by a
concatenation of codes representative of histograms in each
spatial bin.

3.2. Compression and Decompression Algorithm

The DST compression and decompression schemes are
similar to those in Section 2.3. One key difference to note
is that CHoG features are of variable length. We show how a
simple extension to the algorithm allows us to handle vari-
able length features. Note, also, that features need not be
unique too. However, this is rarely the case as individual
CHoG features are typically 25-100 bits. In case repeat fea-
tures are observed, a small number of bits can be used to
signal the count of non-unique features.

We use the same DST coding scheme described in Sec-
tion 2.3. Let S be the number of variable-length Huffman

Figure 5. CHoG descriptor computation pipeline. Canonical patches
around interest points are divided into log polar spatial bins. The gradient
histogram in each spatial bin is represented by a variable length code.

codes, representing the S spatial components of each CHoG
descriptor. Previously, the length of each feature was fixed,
and so, it was used to determine the termination of suffix
symbols for each feature. Now the decoding of S Huffman
codes signal termination of each feature. The modified de-
coding algorithm is shown below:

1. Decode the DST tree structure

2. Scan nodes in the same order as encoder, and retrieve
prefixes pi1 , . . . , pim

3. Scan the suffix stream till S Huffman encoded parts of
CHoG descriptor are decoded. The complete decoded
feature is obtained by combining the prefix and suffix
data. The process is repeated till all features fij are
decoded.

An example of CHoG DST coding is illustrated in Fig-
ure 6. In the example shown in Figure 6, each CHoG feature
is obtained by concatenating S = 2 variable length prefix-
free Huffman codes from the set ((000), (001), (01), (10),
(11)).

3.3. Results

For evaluating the performance of the DST coding
scheme, we use 1000 images from the Mixed Text and
Graphics data set of the MPEG evaluation framework for
“Compact Descriptors for Visual Search” [3, 2]. The im-
ages are also available as part of the Stanford Mobile Visual
Search data set [6].

For feature extraction, we use a DoG interest point detec-
tor and ∼70-bit reference CHoG descriptor, which consists
of 9 spatial bins, represented by 9 variable-length Huffman
codes [1]. The number of features is varied by selecting fea-
tures with the highest Hessian response for a given feature
budget.

The results are shown in Figure 8. Here we note that
the DST coding scheme reduces the data by ∼ log2(m!)

37

(a) (b) (c)
Figure 6. Illustration of DST coding of CHoG features. Each CHoG feature is obtained by concatenating a number of variable length prefix-free Huff-
man codes (one for each spatial bin). In this example, each CHoG feature is obtained by concatenation of two prefix-free Huffman codes from the set
(000), (001), (01), (10), (11). In Figure (a), we construct the DST structure in the same fashion as before. Note that the features are now of variable
length. Multiple symbols within each feature are shown as comma-delimited. Next, as shown in Figure (b), we order the features based on a pre-order
traversal and transmit the tree structure, and the corresponding reordered suffixes. Finally, in the decompression step, we reconstruct the DST from the tree
code. After scanning prefixes, we scan the suffix stream till we decode 2 Huffman prefix-free codes and reconstruct each feature descriptor.

100 200 300 400 500 600
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Number of features

O
rd

er
in

g
ga

in
 (

K
B

)

Figure 7. Reduction in data size by discarding order.

bits over a range of bitrates. At the highest query size, we
can reduce the amount of data by 0.5 KB. Also, the perfor-
mance of the DST coding scheme is close to that predicted
by theory in Equation 10.

4. Conclusions
We propose a technique based on Digital Search Trees

for encoding an unordered set of image features. We show
that for a set of m unique features, we can reduce the query
image size by an additional log2(m!) bits. We perform anal-
ysis of the scheme, and show how it can be applied for en-
coding data from arbitrary sources. We further show how
to apply the scheme for encoding a set of CHoG descriptors
and show that it leads to appreciable reductions in query
size.

References
[1] Compressed Histogram of Gradients - binary release, 2010.

http://www.stanford.edu/˜dmchen/mvs.html. 6
[2] Compact descriptors for visual search: Call for proposals. ISO/IEC JTC1 SC29

WG11 output document N12201, July 2011. 6

100 200 300 400 500 600
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Number of features

D
at

a
S

iz
e

(K
B

)

Original
DST−Coding
DST−Theory
Ordering Gain (log(m!))

Figure 8. Results of DST coding scheme for CHoG descriptors. We
note that the DST coding scheme reduces the data by log2(m!) bits, the
ordering gain. Also, the performance of the DST coding scheme is close
to that predicted by theory in Equation 10.

[3] Compact descriptors for visual search: Evaluation framework. ISO/IEC JTC1
SC29 WG11 output document N12202, July 2011. 6

[4] Amazon. SnapTell, 2007. http://www.snaptell.com. 1
[5] M. Calonder, V. Lepetit, and P. Fua. Brief: Binary robust independent elemen-

tary features. In Proc. of European Conference on Computer Vision (ECCV),
Crete, Greece, October 2010. 1

[6] V. Chandrasekhar, D.M.Chen, S.S.Tsai, N.M.Cheung, H.Chen,
G.Takacs, Y.Reznik, R.Vedantham, R.Grzeszczuk, J.Back, and
B.Girod. Stanford Mobile Visual Search Data Set, 2010.
http://mars0.stanford.edu/mvs_images/. 6

[7] V. Chandrasekhar, G. Takacs, D. M. Chen, S. S. Tsai, R. Grzeszczuk, and
B. Girod. CHoG: Compressed Histogram of Gradients - A low bit rate fea-
ture descriptor. In Proc. of IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), Miami, Florida, June 2009. 6

[8] V. Chandrasekhar, G. Takacs, D. M. Chen, S. S. Tsai, R. Grzeszczuk, Y. Reznik,
and B. Girod. Compressed Histogram of Gradients: A Low Bitrate Descriptor.
In International Journal of Computer Vision, Special Issue on Mobile Vision,
2010. Accepted. 1, 6

[9] D. M. Chen, S. S. Tsai, V. Chandrasekhar, G. Takacs, J. Singh, and B. Girod.
Tree histogram coding for mobile image matching. In Proc. of IEEE Data
Compression Conference (DCC), Snowbird, Utah, March 2009. 2

[10] T. M. Cover and J. A. Thomas. Elements of Information Theory (Wiley Series
in Telecommunications and Signal Processing). Wiley-Interscience, 2006. 2, 5

[11] J. E. G. Coffman and J. Eve. File structures using hashing functions. Commu-
nications of the ACM, 13(7):427–436, 1970. 2

[12] B. Erol, E. Antúnez, and J. Hull. Hotpaper: multimedia interaction with paper
using mobile phones. In Proc. of the 16th ACM Multimedia Conference, New

38

York, NY, USA, 2008. 1
[13] P. Flajolet and R. Sedgewick. Digital search trees revisited. SIAM Journal of

Computing, 15:748–767, 1986. 2, 5
[14] Google-Goggles. 2009. www.google.com/mobile/goggles/. 1
[15] J. Graham and J. J. Hull. Icandy: a tangible user interface for itunes. In Proc. of

CHI ’08: Extended abstracts on human factors in computing systems, Florence,
Italy, 2008. 1

[16] J. J. Hull, B. Erol, J. Graham, Q. Ke, H. Kishi, J. Moraleda, and D. G. V. Olst.
Paper-based augmented reality. In Proc. of the 17th International Conference
on Artificial Reality and Telexistence (ICAT), Washington, DC, USA, 2007. 1

[17] H. Jegou, M. Douze, and C. Schmid. Product Quantization for Nearest Neigh-
bor Search. Accepted to IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2010. 1

[18] P. Kirschenhofer and H. Prodinger. Some further results on digital search trees.
Lecture Notes in Computer Science, 229:177–185, 1986. 5

[19] D. Knuth. The Art of Computer Programming. Fundamental Algorithms. Vol.
1. Addison-Wesley, Reading MA, 1968. 3

[20] D. Knuth. The Art of Computer Programming. Sorting and Searching. Vol. 3.
Addison-Wesley, Reading MA, 1973. 2

[21] Kooaba. Kooaba, 2007. http://www.kooaba.com. 1
[22] D. Nistér and H. Stewénius. Scalable recognition with a vocabulary tree.

In Proc. of IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), New York, USA, June 2006. 1, 2

[23] Nokia. Nokia Point and Find, 2006.
http://www.pointandfind.nokia.com. 1

[24] B. Pittel. Asymptotic growth of a class of random trees. Annals of Probability,
18:414–427, 1985. 5

[25] Y. Reznik. Coding sets of words. In Proc. of IEEE Data Compression Confer-
ence (DCC), Snowbird, Utah, March 2011. 2

[26] R. Sedgewick. Algorithms. Parts 1-4. Fundamentals, Data Structures, Sorting,
Searching. Addison-Wesley, Reading MA, 1998. 3, 4

[27] W. Szpankowski. A characterization of digital search trees from the successful
search viewpoint. Theoretical Computer Science, 85:117–134, 1991. 5

[28] W. Szpankowski. Average case analysis of algorithms on sequences. Wiley,
2001. 6

[29] S. S. Tsai, D. M. Chen, G. Takacs, V. Chandrasekhar, J. P. Singh, and B. Girod.
Location coding for mobile image retreival systems. In Proc. of International
Mobile Multimedia Communications Conference (MobiMedia), London, UK,
September 2009. 2

[30] S. Zaks. Lexicographic generation of ordered trees. Theoretical Computer
Science, 10:63–82, 1980. 3

39

