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Abstract

It is well known that the average redundancy rate
of sample-based universal block codes is monoton-
ically decreasing with the length of samples used
for their construction. We show, that this is no
longer true if samples and blocks of symbols to be
compressed are produced by two different sources.
In this case, the formula for the average redun-
dancy receives an additional term which changes
the overall dependency on the sample length `,
such that there exists a point ` = `∗, where the
redundancy is minimal. This optimal sample size
is asymptotically: `∗ = m−1

2 D(T ||S) + O
(

1
n

)
, where

m is a cardinality of the alphabet, n is a block
size, and D (T ||S) is the relative entropy between
the sources T , S producing samples and input data
correspondingly. We use this finding to show how
to design optimal sequential and random-access-
capable compression systems based on adaptive
block codes.

1 Introduction

In order to construct a minimum-redundancy code
for a memoryless source one needs to know its ex-
act parameters (probabilities of symbols). When
such parameters are not known, the best option
available is to use universal codes – ones that min-
imize the worst case redundancy for a class of
sources [11].

Sample-based (or adaptive) block codes represent
a transitional case: while the exact parameters of
the source are not known, one can obtain finite
length sequences of symbols (or samples) produced
by this source in the past. It turns out, that using
such samples it is possible to construct codes that
are more efficient in encoding this particular source
than pure universal codes [8, 9].
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In this paper we will show that under certain
conditions sample-based block codes can outperform
universal codes even in a case when samples are
produced by a different source from one we are
about to encode. We establish this fact by deriving
an asymptotic expression for the average redun-
dancy rate of adaptive block codes under mixed
sources, which generalizes the previous well-known
result of Krichevsky (cf. [10, Theorem 1], [11, The-
orem 3.4.1]).

The most interesting new property of such codes
is that under different sources their average re-
dundancy can be minimized by properly selecting
the length of samples used for their construction.
We will obtain an asymptotic formula for the op-
timal sample length, and will show how it can be
used to guide the design of practical data compres-
sion schemes based on the adaptive codes.

2 Parameters of Pure and
Mixed Memoryless Sources

Let Ω be a class of memoryless sources over some
finite alphabet A, |A| = m, 2 6 m < ∞. By PX(α)
we denote a probability with which a source X ∈ Ω
produces a symbol α ∈ A. We assume that PX(α)
has the standard properties: 0 6 PX(α) 6 1 (∀α ∈
A), and

∑
α∈A PX(α) = 1. By H(X) we denote

the entropy of the source X:

H(X) = −
∑

α∈A

PX(α) log PX(α) , (1)

and by D (X ||Y ) we denote the relative entropy
(or Kullback-Leibler distance) between two sources
X,Y ∈ Ω:

D (X ||Y ) =
∑

α∈A

PX(α) log
PX(α)
PY (α)

. (2)

The above parameters are standard in the informa-
tion theory and readers are referred to textbooks



[2] or [16] for discussions of their properties and
means.

Consider now two sources X,Y ∈ Ω, and a real
number γ, such that 0 6 γ 6 1. By X

γ

./ Y
we denote a stochastic source, which probabilities
represent weighted (with parameter γ) average of
probabilities of sources Y and Y (∀α ∈ A):

P
X

γ
./Y

(α) = γ PX(α) + (1− γ)PY (α) . (3)

Indeed, X
γ

./ Y ∈ Ω, and we call it a mixed source
based on sources X and Y .

From (3) and concavity of the entropy (1), it
follows that:

H
(
X

γ

./ Y
)

> γ H(X) + (1− γ) H(Y ) ,

which illustrates a well-known effect of increase of
the entropy due to the mixture of sources [2].

Our main attention, however, will be focused on
the residual quantity:

∆
(
X

γ

./ Y
)

= H
(
X

γ

./ Y
)
−γ H(X)−(1−γ)H(Y ) ,

(4)
which will call the excess entropy of a mixed source
X

γ

./ Y .
The following lemma establishes several sim-

ple relations between ∆
(
X

γ

./ Y
)

and relative en-
tropies between the original and mixed sources.

Lemma 1. The excess entropy ∆
(
X

γ

./ Y
)

has
the following properties:

∆
(
X

γ

./ Y
)

= γ D
(
X ||X γ

./ Y
)

(5)

+(1− γ)D
(
Y ||X γ

./ Y
)

,

lim
γ→0

∆
(
X

γ

./ Y
)

γ
= D (X ||Y ) , (6)

lim
γ→1

∆
(
X

γ

./ Y
)

1− γ
= D (Y ||X) . (7)

In our subsequent discussion we will show that
the excess entropy ∆ ( . ) arises in the analysis
of sample-based universal block codes [10]. Limit
properties (6) and (7) will be crucial for under-
standing asymptotic behavior of these codes.

3 Block Codes for Known,
Unknown, and Partially
Known Sources

Consider a word w of length |w| = n produced
by a source S ∈ Ω. Since S is memoryless, the
probability of w is a product of probabilities of its
letters, i.e.:

PS (w) =
∏

α∈A

PS(α)rα(w) , (8)

where rα(w) denotes the number of letters α in w.
Indeed,

∑
α∈A rα(w) = |w|.

A block code φ is an injective mapping between
words w ∈ An and binary sequences (or codewords)
φ (w):

φ : An → {0, 1}∗ , (9)

where the codewords have a property that φ (wi1)
φ (wi2) . . . φ (wis

) = φ (wj1) φ (wj2) . . . φ (wit
) al-

ways implies that s = t and φ (wik
) = φ (wjk

)
(k = 1, . . . , s), i.e. the code φ is decipherable.

By Φ we will denote a set of all possible deci-
pherable codes (9).

The average cost of an encoding φ of a source S
is:

C (φ, n, S) =
1
n

∑

w∈An

PS(w) |φ(w)| , (10)

where |φ(w)| denotes the length of a codeword
φ(w). The average redundancy rate of such an en-
coding is:

R (φ, n, S) = C (φ, n, S)−H(S) . (11)

The classic problem of source coding is to
find a code φS that minimizes the redundancy
R (φS , n, S) of an encoding of a known source S:

R (φS , n, S) = inf
φ∈Φ

R (φ, n, S) .

Huffman, Shannon, and Gilbert-Moore algorithms
are very well known examples of possible (exact or
approximate) solutions of this problem [7, 2, 11].
These codes have a similar (with a difference in a
constant factor) redundancy rate of R (φS , n, S) =
O

(
1
n

)
[11].

A more interesting problem is to find a code φΩ

that minimizes the worst case redundancy of en-
coding of any source S ∈ Ω:

R (φΩ, n, Ω) = inf
φ∈Φ

sup
S ∈Ω

R (φ, n, S) .

Such codes are called universal codes [5, 3, 11]
and they are particularly useful in situations when
the parameters of a source to be encoded are not
known.

In order to construct a universal block code
φΩ one can estimate probabilities Pe(w) of words
w ∈ An first, and then apply any convenient
coding technique, such as Huffman, Shannon, or
Gilbert-Moore code to a source with probabilities
Pe(w) [11]. The appropriate (and, in fact, nearly-
optimal [12]) estimates of words’ probabilities can
be obtained by using a well-known Krichevsky-
Trofimov (KT) formula [10]:

Pe (w) = Γ
(m

2

) ∏
α∈A Γ

(
rα(w) + 1

2

)

π
m
2 Γ

(|w|+ m
2

) , (12)



where m is the cardinality of the alphabet A, and
Γ(x) is a Γ-function.

It has been shown (cf. [10, 11]), that the aver-
age redundancy rate of universal block codes φΩ

decreases with the block size n as:

R (φΩ, n, Ω) =
1
n

[
m− 1

2
log

n

m
+ O (m)

]
(13)

= O

(
log n

n

)
,

which is somewhat slower than the O
(

1
n

)
conver-

gence rate of codes for a known source.
Yet another problem in coding theory is to con-

struct a set of codes φ`,Ω =
{
φu|u ∈ A`

}
based

on observed sequences of symbols (or samples) u
of length ` produced by a source S ∈ Ω, such
that their worst case average redundancy (under
the same source) is minimal:

R (φ`,Ω, n, Ω) = inf
{φu}⊂Φ

sup
S∈Ω

∑

u∈A`

PS(u)R (φu, n, S) .

Such codes are called sample-based or adaptive
block codes, and they are useful in a (typical in
practice) situation when one has to encode a source
known to have produced a given sample sequence
in the past.

The idea of sample-based codes belongs to
R.E. Krichevsky [8], who has shown that the av-
erage redundancy rate of such codes is (cf. [9, 10]):

R(φ`,Ω, n, Ω) ∼ m− 1
2 n

log
` + n

`
, (14)

where ` is the sample length. Based on (14) it is
clear that the use of sufficiently long (` = O(n))
samples will make R(φ`,Ω, n, Ω) = O

(
1
n

)
, which is

the order of the redundancy rate of codes built for a
known source. It is also clear that further increase
(` À n) of the sample length ` will only reduce
the constant factor in (but not the order of) this
expression.

While this result fully explains the effectiveness
of adaptive codes when the sample and input blocks
are produced by the same source, in practice, how-
ever, we much more often have a situation when
we know that the sample is produced by a similar,
but not necessarily the same source as one we are
about to encode. Realization of this fact was our
main motivation for this research, and in the next
two sections we will provide a formal setting of this
problem and present the results of our analysis.

4 Average Redundancy Rate
of Adaptive Block Codes
under Different Sources

Assume that at the time of code construction we
have access to a sample sequence u of length |u| = `

produced by some source T ∈ Ω, and we hope that
the actual source that will be compressed S ∈ Ω is
similar to T :

D (T ||S) 6 δ , (15)

where δ < ∞ is some positive constant.
Following Krichevsky [11], we construct adaptive

block codes φ`,T =
{
φu|u ∈ A`

}
using the esti-

mates

Pe (w|u) =
Pe (uw)
Pe (u)

, (16)

of conditional probabilities1 of words w ∈ An. The
average (with respect to both word w and the sam-
ple u) redundancy rate of such codes2 is:

R (φ`,T , n, S)

=
1
n

∑

u∈A`

∑

w∈An

PT (u)PS(w) |φu(w)| −H(S)

=
1
n

∑

u∈A`

∑

w∈An

PT (u)PS(w) d− log Pe(w|u)e

−H(S) , (17)

and our main goal will be to evaluate the asymp-
totic behavior of this quantity in a case when
D (T ||S) 6= 0.

5 Main Results

We are now ready to present our results regard-
ing the performance of adaptive block codes under
different sources T and S.

Theorem 1. The average redundancy rate of
adaptive block codes φ`,T is asymptotically (for
large n and `):

R (φ`,T , n, S) =
1
n

[
(` + n)∆

(
T

`/(`+n)
./ S

)

+
m− 1

2
log

` + n

`
+ O (1)

]
, (18)

where m is the cardinality of the alphabet, n is
a block size, ` is the length of sample sequences
used to construct these codes, and ∆

(
T

`/(`+n)
./ S

)

is the excess entropy of a `
`+n -mixed source based

on sources T and S producing samples and input
blocks correspondingly.

1Note that since both sources S and T are memory-
less, the true probability of a word w is indeed the same

P T,S(u|w) =
P T,S(u w)

P T (u)
=

P T (u) PS(w)
P T (u)

= PS(w). However,

the estimated conditional probability Pe(w|u) may be dif-
ferent from Pe(w). Most importantly, the estimate Pe(w|u)
is based on a longer overall sequence |u w| = ` + n, which
means that it is more accurate than Pe(w).

2For simplicity, we assume that the final encoding is done
by using the Shannon code.



The first immediate consequence of Theorem 1
and a property (7) is that the use of ` = O(n) and
longer samples from a different source T 6≡ S will
actually make the redundancy of such codes O(1)-
large. This means that such codes are no longer
universal (no redundancy rate convergence with the
block size n) and consecutively, they are of little
practical interest:

Corollary 1. When `
`+n = γ = O(1):

R (φ`,T , n, S) =
1

1− γ
∆

(
T

γ

./ S
)
+O

(
1
n

)
= O(1) .

(19)

Corollary 2. When ` À n:

R (φ`,T , n, S) = D (S ||T )+O

(
1
n

)
= O(1) . (20)

On the other hand, if we let input blocks to be
much longer than the sample (n À `), then due to
the second limit property of the excess entropy (6)
we arrive at the following expression.

Corollary 3. When n À `:

R (φ`,T , n, S)

=
1
n

[
m− 1

2
log

n

`
+ `D (T ||S) + O (1)

]
. (21)

Observe, that the main terms depending on `:
−m−1

2 log ` and `D (T ||S) in (21) have the op-
posite directions (and different speeds) of growth,
which means, that their sum must have a point of
minima. I.e., we can prove the following.

Theorem 2. If D (T ||S) 6= 0, then there exists a
sample length `∗ such that

R (φ`∗,T , n, S) = min
`

R (φ`,T , n, S) . (22)

Corollary 4. The optimal length of samples `∗ is
asymptotically (for large n):

`∗ =
m− 1

2 D (T ||S)
+ O

(
1
n

)
. (23)

Corollary 5. The minimum average redundancy
rate R (φ`∗,T , n, S) is asymptotically (for large n):

R (φ`∗,T , n, S) =
1
n

[
m− 1

2
log n

+
m− 1

2
log

2 eD (T ||S)
m− 1

+ O (1)
]

. (24)

Now, based on the formula (24) we can find the
maximum distance between sources D (T ||S) when
the adaptive block codes φ`∗,T have equal or better
efficiency than pure universal codes (13).

Theorem 3. Adaptive block codes constructed us-
ing samples from a source T and applied to a source
S can achieve a lower average redundancy than uni-
versal codes if:

D (T ‖S) < δ1 =
1
2

+ O

(
1
m

)
. (25)

In other words, we can conclude that adap-
tive block codes are useful even in situations
when samples are produced by a different (within
D (T ‖S) 6 δ1) source. However, in order to
achieve their maximum efficiency such codes shall
be based on samples of length ` = `∗ (23). Using
longer or shorter samples will only increase their
redundancy. This constitutes a principal difference
in the behavior of these codes compared to a case
when samples are produced by the same source.

6 Applications

In this section we will show how our results can be
used to guide the design of two data compression
systems based on adaptive block codes. The first
system provides random access to compressed data,
and for this reason all samples are generated by
an additional (embedded in both encoder and de-
coder) source. The second system is an example of
a sequential data compression scheme, where sam-
ples are being taken from previously compressed
(or decompressed) blocks.

6.1 Adaptive Coding System Based
on an Additional Source

Consider a situation when we need to encode a set
of words wi ∈ An produced by different memoryless
sources Si (i = 1, . . . , N). These words will have
to be encoded independently from one another, but
both encoder and decoder will have access to sam-
ples ui produced by another source T , such that:

max
i

D (T ||Si) 6 δT , (26)

where δT < 1
2 is a known constant.

To implement such coding system we will use
adaptive block codes φ`,T , and we will want to find
a sample length `∗, such that:

R (φ`∗,T , n, S1, . . . , SN )

=
N∑

i=1

R (φ`∗,T , n, Si) = min
`

{
N∑

i=1

R (φ`,T , n, Si)

}
.

Using (21), we can show that:

R (φ`,T n, S1, . . . , SN )

=
N

n

[
m− 1

2
log

n

`
+

`

N

N∑

i=1

D (T ||Si) + O (1)

]
,



and due to Theorem 2 and formula (23):

`∗ =
m− 1

2
N∑N

i=1 D (T ||Si)
+ O

(
1
n

)
. (27)

Using the upper bound for D (T ||Si) (26), we can
show that

`∗ > m− 1
2 δT

, (28)

which gives us a very simple estimate for the sample
length ` that can be used to design such codes.

6.2 Adaptive Coding System Using
Preceding Blocks as Samples

As in the previous section, we have to encode a set
of words wi ∈ An produced by different memoryless
sources Si (i = 1, . . . , N), but now we are allowed
to take samples from the previous words (except
for the first one):

ui =
[ ∅ , if i = 1 ,

prefix1...` (wi−1) , if i = 2, . . . , N .

Assume also, that:

max
i>1

D (Si−1 ||Si) 6 δ∆ , (29)

where δ∆ < 1
2 is a known constant.

Following the same arguments as in the previ-
ous section we can show that the optimal length of
samples `∗ in this coding system is

`∗ =
m− 1

2
N − 1∑N

i=2 D (Si−1 ||Si)
+ O

(
1
n

)
. (30)

Using (29) this estimate can be further simplified
to

`∗ > m− 1
2 δ∆

. (31)

Based on these estimates, we can conclude that
in order to design an optimal adaptive block coding
system it is not sufficient to simply have a ”good”
reference source. What is also important is to know
how distant (in the D(. || .) metric) it can be from
the actual source(s) we are about to encode.
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A Sketches of Proofs

Using formula (17) and an inequality dxe 6 1 + x
(x is a positive real number), we can upper bound
the average redundancy rate of an adaptive block
code (17) as:

R (φ`,T , n, S)

6 1
n


1−

∑

u∈A`

∑

w∈An

PT (u)PS(w) log Pe (w|u)




−H(S) , (32)

where where PT (u) and PS(w) are probabilities of
words u and w produced by memoryless sources
T and S correspondingly, and Pe (w|u) is the KT-
estimated conditional probability (16) of the word
w.

Based on (16), we can split the central sum in
(32) into:

−
∑

u∈A`

∑

w∈An

PT (u)PS(w) log Pe (w|u)

= −
∑

u∈A`

∑

w∈An

PT (u)PS(w) log Pe (u w)

+
∑

u∈A`

PS(u) log Pe (u)

= (` + n)Ce(`, T, n, S)− `Ce(`, T ) , (33)

where

Ce(`, T ) = −1
`

∑

u∈A`

PT (u) log Pe (u) , (34)

is the average rate of the KT-estimator processing
`-symbols words produced by the source T , and

Ce(`, T, n, S) =
1

` + n

∑

u∈A`

∑

w∈An

PT (u)PS(w)×

× log Pe (uw) , (35)

is the average rate of the KT-estimator process-
ing sequences with ` first symbols produced by the
source T and the remaining n symbols produced by
the source S.

Using Krichevsky’s technique [11, 3.4.4–3.4.10]
(Stirling’s approximation for log Pe(u), and Jensen
inequalities for sums over − log(x) and x log(x)) we
can show that:

Ce(`, T ) = H(T ) +
1
`

[
m− 1

2
log

`

m
+ r1

]
, (36)

where the remaining term r1 is such that:

−m− 2
2

log e 6 lim
`→∞

r1 +
1
2

log 2− δm 6 m

2
log e ,

where

δm =
m− 1

2
log m− m

2
log 2e +

1
2

log 4π

− log Γ
(m

2

)
= O

(
1
m

)
.

Similarly, we can show that the average rate of
the KT-estimator under a mixed source (35) satis-
fies:

Ce(`, T, n, S) = H
(
T

`/(`+n)
./ S

)

+
1

` + n

[
m− 1

2
log

` + n

m
+ r2

]
, (37)

where the remaining term r2 is such that:

−m

2
log e 6 lim

`,n→∞
r2 +

1
2

log 2− δm 6 m

2
log e .

By applying estimates (36) and (37) in (32,33)
we can show that the average redundancy rate of
an adaptive code is

R (φ`,T , n, S) 6 1
n

[
(` + n)∆

(
T

`/(`+n)
./ S

)

+
m− 1

2
log

` + n

`
+ r2 − r1 + 1

]
,

which, leads to a formula (18) claimed in the The-
orem 1.

The subsequent claims are simple and natural
consequences of the Theorem 1, and they can be
easily repeated following the order in which they
appear in the main text.


