
Int J Comput Vis
DOI 10.1007/s11263-011-0453-z

Compressed Histogram of Gradients: A Low-Bitrate Descriptor

Vijay Chandrasekhar · Gabriel Takacs · David
M. Chen · Sam S. Tsai · Yuriy Reznik ·
Radek Grzeszczuk · Bernd Girod

Received: 27 September 2010 / Accepted: 17 April 2011
© Springer Science+Business Media, LLC 2011

Abstract Establishing visual correspondences is an essen-
tial component of many computer vision problems, which
is often done with local feature-descriptors. Transmission
and storage of these descriptors are of critical importance in
the context of mobile visual search applications. We propose
a framework for computing low bit-rate feature descriptors
with a 20× reduction in bit rate compared to state-of-the-
art descriptors. The framework offers low complexity and
has significant speed-up in the matching stage. We show
how to efficiently compute distances between descriptors in
the compressed domain eliminating the need for decoding.
We perform a comprehensive performance comparison with
SIFT, SURF, BRIEF, MPEG-7 image signatures and other
low bit-rate descriptors and show that our proposed CHoG
descriptor outperforms existing schemes significantly over
a wide range of bitrates. We implement the descriptor in a
mobile image retrieval system and for a database of 1 mil-
lion CD, DVD and book covers, we achieve 96% retrieval
accuracy using only 4 KB of data per query image.

Keywords CHoG · Feature descriptor · Mobile visual
search · Content-based image retrieval ·
Histogram-of-gradients · Low bitrate

This work was first presented as an oral presentation at Computer
Vision and Pattern Recognition (CVPR), 2009. Since then, the authors
have studied feature compression in more detail in Chandrasekhar et
al. (2009a, 2010a, 2010b, 2010c). A default implementation of CHoG
is available at http://www.stanford.edu/vijayc/.

V. Chandrasekhar (�) · G. Takacs · D.M. Chen · S.S. Tsai ·
Y. Reznik · R. Grzeszczuk · B. Girod
Stanford University, Stanford, USA
e-mail: vijayc@stanford.edu

1 Introduction

Mobile phones have evolved into powerful image and video
processing devices, equipped with high-resolution cameras,
color displays, and hardware-accelerated graphics. They are
also equipped with GPS, and connected to broadband wire-
less networks. All this enables a new class of applications
that use the camera phone to initiate search queries about
objects in visual proximity to the user (Fig. 1). Such applica-
tions can be used, e.g., for identifying products, comparison
shopping, finding information about movies, CDs, real es-
tate, print media or artworks. First commercial deployments
of such systems include Google Goggles (Google 2009),
Nokia Point and Find (Nokia 2006), Kooaba (Kooaba 2007),
Ricoh iCandy (Erol et al. 2008; Graham and Hull 2008;
Hull et al. 2007) and Snaptell (Amazon 2007).

Mobile image retrieval applications pose a unique set of
challenges. What part of the processing should be performed
on the mobile client, and what part is better carried out at the
server? On the one hand, transmitting a JPEG image could
take tens of seconds over a slow wireless link. On the other
hand, extraction of salient image features is now possible on
mobile devices in seconds or less. There are several possible
client-server architectures:

– The mobile client transmits a query image to the server.
The image retrieval algorithms run entirely on the server,
including an analysis of the query image.

– The mobile client processes the query image, extracts fea-
tures and transmits feature data. The image retrieval algo-
rithms run on the server using the feature data as query.

– The mobile client downloads feature data from the server,
and all image matching is performed on the device.

When the database is small, it can be stored on the phone
and image retrieval algorithms can be run locally (Takacs et

http://www.stanford.edu/vijayc/
mailto:vijayc@stanford.edu

Int J Comput Vis

Fig. 1 Example of a mobile visual search application. The user points
his camera phone at an object and obtains relevant information about it.
Feature compression is key to achieving low system latency. By trans-
mitting compressed descriptors from the mobile-phone, one can reduce
system latency significantly

al. 2008). When the database is large, it has to be placed on
a remote server and retrieval algorithms are run remotely.
In each case, feature compression is key to decreasing the
amount of the data transmitted, and thus, reducing network
latency. A small descriptor also helps if the database is
stored on the mobile device. The smaller the descriptor, the
more features can be stored in limited memory.

Since Lowe’s paper in 1999 (Lowe 1999), the highly
discriminative SIFT descriptor remains the most popu-
lar descriptor in computer vision. Other examples of fea-
ture descriptors are Gradient Location and Orientation His-
togram (GLOH) (Mikolajczyk and Schmid 2005), Speeded
Up Robust Features (SURF) (Bay et al. 2008), and the
machine-optimized gradient-based descriptors (Winder and
Brown 2007; Winder et al. 2009). As a 128-dimensional
descriptor, SIFT is conventionally stored as 1024 bits (8
bits/dimension). Alas, the size of SIFT descriptor data from
an image is typically larger than the size of the JPEG com-
pressed image itself, making it unsuitable for mobile appli-
cations.

Several compression schemes have been proposed to re-
duce the bitrate of SIFT descriptors. In our recent work
(Chandrasekhar et al. 2010b), we survey different SIFT
compression schemes. They can be broadly categorized
into schemes based on hashing (Yeo et al. 2008; Torralba
et al. 2008; Weiss et al. 2008), transform coding (Chan-
drasekhar et al. 2009a, 2010b) and vector quantization (Je-
gou et al. 2008, 2010; Nistér and Stewénius 2006). We
note that hashing schemes like Locality Sensitive Hashing
(LSH), Similarity Sensitive Coding (SSC) or Spectral Hash-
ing (SH) do not perform well at low bitrates. Conventional
transform coding schemes based on Principal Component
Analysis (PCA) do not work well due to the highly non-
Gaussian statistics of the SIFT descriptor. Vector quanti-
zation schemes based on the Product Quantizer (Jegou et
al. 2010) or a Tree Structured Vector Quantizer (Nistér and
Stewénius 2006) are complex and require storage of large
codebooks on the mobile device.

Other popular approaches used to reduce the size of
descriptors typically employ dimensionality reduction via
PCA or Linear Discriminant Analysis (LDA) (Ke and Suk-
thankar 2004; Hua et al. 2007). Ke and Sukthankar (2004)
investigate dimensionality reduction of patches directly via

PCA. Hua et al. (2007) propose a scheme that uses LDA.
Winder et al. (2009) combine the use of PCA with addi-
tional optimization of gradient and spatial binning parame-
ters as part of the training step. The disadvantages of PCA
and LDA approaches are high computational complexity,
and the risk of overtraining for descriptors from a particu-
lar data set. Further, with PCA and LDA, descriptors cannot
be compared in the compressed domain if entropy coding
is employed. The 60-bit MPEG-7 Trace Transform descrip-
tor (Brasnett and Bober 2007), Transform coded SURF fea-
tures (Chandrasekhar et al. 2009a) and Binary Robust In-
dependent Elementary Features (BRIEF) (Calonder et al.
2010) are other examples of low-bitrate descriptors pro-
posed in recent literature. Johnson proposes a generalized
set of techniques to compress local features in his recent
work (Johnson 2010).

Through our experiments, we came to realize that simply
compressing an “off-the-shelf” descriptor does not lead to
the best rate-constrained image retrieval performance. One
can do better by designing a descriptor with compression
in mind. Of course, such a descriptor still has to be ro-
bust and highly discriminative at low bitrates. Ideally, it
would permit descriptor comparisons in the compressed do-
main for speedy feature matching. Further, we would like
to avoid a training step so that the descriptor is not depen-
dent on any specific data set. Finally, the compression al-
gorithm should have low complexity so that it can be effi-
ciently implemented on mobile devices. To meet all these
requirements simultaneously, we designed the Compressed
Histogram of Gradients (CHoG) descriptor (Chandrasekhar
et al. 2009b, 2010c).

The outline of the paper is as follows. In Sect. 2, we
review Histogram-of-Gradients (HoG) descriptors, and dis-
cuss the design of the CHoG descriptor. We discuss differ-
ent quantization and compression schemes used to gener-
ate low bitrate CHoG descriptors. In Sect. 3, we perform a
comprehensive survey of several low bitrate descriptors pro-
posed in the literature and show that CHoG outperforms all
schemes. We present both feature-level results and image-
level retrieval results in a practical mobile product search
system.

2 Descriptor Design

The goal of a feature descriptor is to robustly capture
salient information from a canonical image patch. We use
a histogram-of-gradients descriptor and explicitly exploit
the anisotropic statistics of the underlying gradient distribu-
tions. By directly capturing the gradient distribution, we can
use more effective distance measures like Kullback-Leibler
(KL) divergence, and more importantly, we can apply quan-
tization and compression schemes that work well for dis-
tributions to produce compact descriptors. In Sect. 2.2, we

Int J Comput Vis

Fig. 2 Illustration of CHoG feature descriptors. We first start with
patches obtained from interest points (e.g., corners, blobs) at different
scales. The patches at different scales are oriented along the dominant
gradient. We first divide the scaled and oriented canonical patches into
log-polar spatial bins. Then, we perform independent quantization of

histograms in each spatial bin. The resulting codebook indices are then
encoded using fixed-length or arithmetic codes. The final bitstream of
the feature descriptor is formed as a concatenation of codes represen-
tative of histograms in each spatial bin. CHoG descriptors at 60 bits
match the performance of 1024-bit SIFT descriptors

discuss the choice of parameters of our Uncompressed His-
togram of Gradients (UHoG) descriptor. In Sect. 2.3, we dis-
cuss quantization and compression schemes that enable low
bitrate Compressed Histogram of Gradient (CHoG) descrip-
tors. First, in Sect. 2.1, we describe the framework used for
evaluating descriptors.

2.1 Descriptor Evaluation

For evaluating the performance of low bitrate descriptors,
we use the two data sets provided by Winder et al. in their
most recent work (Winder et al. 2009), Notre Dame and Lib-
erty. For algorithms that require training, we use the Notre
Dame data set, while we perform our testing on the Lib-
erty set. We use the methodology proposed in Winder et al.
(2009) for evaluating descriptors. We compute a distance be-
tween each matching and non-matching pair of descriptors.
The distance measure used depends on the descriptor. For
example, CHoG descriptors use the symmetric Kullback-
Leibler (KL) (Cover and Thomas 2006) as it performs bet-
ter than L1 or L2 norm for comparing histograms (Chan-
drasekhar et al. 2009b). From these distances, we obtain a
Receiver Operating Characteristic (ROC) curve which plots
correct match fraction against incorrect match fraction. We
show the performance of the 1024-bit SIFT descriptor in
each ROC plot. Our focus is on descriptors that perform on
par with SIFT and are in the range of 50–100 bits.

2.2 Histogram-of-Gradient Based Descriptors

A number of different feature descriptors are based on
the distribution of gradients within an image patch: Lowe
(2004), Bay et al. (2008), Dalal and Triggs (2005), Freeman
and Roth (1994), Winder et al. (2009). In this section, we

describe the pipeline used to compute gradient histogram
descriptors, and then show the relationships between SIFT,
SURF and our proposed descriptor.

The CHoG descriptor pipeline is illustrated in Fig. 2. As
in Mikolajczyk et al. (2005), we model illumination changes
to the patch appearance by a simple affine transformation,
aI + b, of the pixel intensities, which is compensated by
normalizing the mean and standard deviation of the pixel
values of each patch. Next, we apply an additional Gaussian
smoothing of σ = 2.7 pixels to the patch. The smoothing
parameter is obtained as the optimal value from the learn-
ing algorithm proposed by Winder and Brown, for the data
sets in consideration. Local image gradients dx and dy are
computed using a centered derivative mask [−1,0,1]. Next,
the patch is divided into localized spatial bins. The granu-
larity of spatial binning is determined by a tension between
discriminative power and robustness to minor variations in
interest point localization error. Then, some statistics of dx

and dy are extracted separately for each spatial bin, forming
the UHoG descriptor.

SIFT and SURF descriptors can be calculated as func-
tions of the gradient histograms, provided that such his-
tograms are available for each spatial bin and the dx , dy val-
ues are sorted into sufficiently fine bins. Let PDx,Dy (dx, dy)

be the normalized joint (x, y)-gradient histogram in a spa-
tial bin. Note that the gradients within a spatial bin may be
weighted by a Gaussian window prior to descriptor compu-
tation (Lowe 2004; Bay et al. 2006).

The 8 SIFT components of a spatial bin, DSIFT , are

DSIFT(i) =
∑

(dx ,dy)∈�i

√
d2
x + d2

yPDx,Dy (dx, dy) (1)

where �i = {(dx, dy)|π(i−1)
4 ≤ tan−1 dy

dx
< πi

4 , i = 1 . . .8}.
Similarly, the 4 SURF components of a spatial bin, DSURF ,

Int J Comput Vis

Fig. 3 DAISY configurations
with K = 9,13,17 spatial bins.
We use Gaussian-shaped
overlapping (soft) binning

are

DSURF(1) =
∑

dx

∑

dy

PDx,Dy (dx, dy)|dx | (2)

DSURF(2) =
∑

dx

∑

dy

PDx,Dy (dx, dy) dx (3)

DSURF(3) =
∑

dx

∑

dy

PDx,Dy (dx, dy)|dy | (4)

DSURF(4) =
∑

dx

∑

dy

PDx,Dy (dx, dy) dy (5)

For CHoG, we propose coarse quantization of the 2D
gradient histogram, and encoding the histogram directly
as a descriptor. We approximate PDx,Dy (dx, dy) as P̂

D̂x ,D̂y

(d̂x, d̂y) for (d̂x, d̂y) ∈ S, where S represents a small num-
ber of quantization centroids or bins as shown in Fig. 4. We
refer to this uncompressed descriptor representation P̂

D̂x ,D̂y

(for all spatial bins) as Uncompressed Histogram of Gradi-
ents (UHoG), which is obtained by counting the number of
pixels which get quantized to each centroid in S, and then
L1 normalized.

The ith UHoG descriptor is defined as Di
UHoG

= [P̂ i
1 , P̂ i

2 ,

. . . , P̂ i
N], where P̂ i

k represents the gradient histograms in
spatial bin k of descriptor i, and N is the total number of
spatial bins. Note that the dimensionality of UHoG is given
by N × B , where N is the number of spatial bins, and B is
the number of bins in the gradient histogram. Next, we dis-
cuss the parameters chosen for spatial and gradient binning.

2.2.1 Spatial Binning

Since we want a very compact descriptor, we have exper-
imented with reducing the number of spatial bins. Fewer
spatial bins means fewer histograms and a smaller descrip-
tor. However, it is important that we do not adversely affect
the performance of the descriptor. SIFT and SURF use a
square 4×4 grid with 16 cells. We divide the patch into log-
polar configurations as proposed in Tola et al. (2008), Miko-
lajczyk and Schmid (2005), Winder et al. (2009). The log-
polar configurations have been shown to perform better than

the 4 × 4 square-grid spatial binning used in SIFT (Winder
et al. 2009). There is one key difference between the DAISY
configurations proposed in Winder et al. (2009), and the con-
figurations shown in Fig. 3. In Winder et al. (2009), the au-
thors divide the patch into disjoint localized cells. We use
overlapping regions for spatial binning (Fig. 3) which im-
proves the performance of the descriptor by making it more
robust to interest point localization error. The soft assign-
ment is made such that each pixel contributes to multiple
spatial bins with normalized Gaussian weights that sum to 1.
A value of σ for the Gaussian that works well is dmin/3,
where dmin is the minimum distance between bin centroids
in the DAISY configuration. Intuitively, a pixel close to a
bin centroid should contribute little to other spatial bins.
The DAISY-9 configuration matches the performance of the
4 × 4 square-grid configuration, and hence, we use it for all
the experiments in this section. Next, we discuss how the
gradient binning is done.

2.2.2 Gradient Histogram Binning

As stated earlier, we wish to approximate the histogram of
gradients with a small set of bins, S. We propose histogram
binning schemes that exploit the underlying gradient statis-
tics observed in patches extracted around interest points.
The joint distribution of (dx, dy) for 10000 cells from the
training data set is shown in Fig. 4(a, b). We observe that
the distribution is strongly peaked around (0,0), and that
the variance is higher for the y-gradient. This anisotropic
distribution is a result of canonical image patches being ori-
ented along the most dominant gradient by the interest point
detector.

We perform a vector quantization of the gradient vectors
into a small set of bin centers, S, shown in Fig. 4. We call
these bin configurations VQ-3, VQ-5, VQ-7 and VQ-9. All
bin configurations have a bin center at (0,0) to capture the
central peak of the gradient distribution. The additional bin
centers are evenly spaced (with respect to angle) over el-
lipses, the eccentricity of which are chosen in accordance
with the observed skew in the gradient statistics. Similar to
soft spatial binning, we assign each (dx, dy) pair to multi-
ple bin centers with normalized Gaussian weights. Again,

Int J Comput Vis

Fig. 4 The joint (dx, dy) gradient distribution (a) over a large number
of cells, and (b), its contour plot. The greater variance in y-axis results
from aligning the patches along the most dominant gradient after inter-
est point detection. The quantization bin constellations VQ-3, VQ-5,
VQ-7 and VQ-9 and their associated Voronoi cells are shown at the
bottom

Fig. 5 ROC curves for various gradient binning configurations.
DAISY-9 spatial bin configuration and symmetric KL divergence are
used. The VQ-5 configuration matches the performance of SIFT

we use σ = qmin/3, where qmin is the minimum distance
between centroids in the VQ bin configurations shown in
Fig. 4.

To evaluate the performance of each gradient-binning
configuration, we plot the ROC curves in Fig. 5. As we in-
crease the number of bin centers, we obtain a more accurate
approximation of the gradient distribution, and the perfor-
mance of the descriptor improves. We observe that the VQ-
5 and DAISY-9 UHoG configuration suffices to match the
performance of SIFT.

2.2.3 Distance Measures

Since UHoG is a direct representation of a histogram we can
use distance measures that are well-suited to histogram com-
parison. Several quantitative measures have been proposed
to compare distributions in the literature. We consider three
measures, the L2-norm, Kullback-Leibler divergence (Kull-
back 1987), and the Earth Mover’s Distance (EMD) (Rubner
et al. 2000). The distance between two UHoG (or CHoG)
descriptors is defined as d(Di , Dj) = ∑N

k=1 dhist(P̂
i
k , P̂

j
k),

where N is the number of spatial bins, dhist is a distance
measure between two distributions, and P̂ i represents the
gradient distribution in a spatial bin.

Let B denote the number of bins in the gradient his-
togram, and P̂ i = [pi

1,p
i
2, . . . , p

i
B]. We define dKL as the

symmetric KL divergence between two histograms such
that,

dKL(P̂ i , P̂ j) =
B∑

n=1

pi
n log

pi
n

p
j
n

+
B∑

n=1

p
j
n log

p
j
n

pi
n

. (6)

The EMD is a cross-bin histogram distance measure, un-
like L2-norm and KL divergence which are bin-by-bin dis-
tance measures. The EMD is the minimum cost to trans-
form one histogram into the other, where there is a “ground
distance” defined between each pair of bins. This “ground
distance” is the distance between the bin-centers shown in
Fig. 4. Note that EMD is a metric and observes the triangle
inequality, while KL divergence is not.

In Fig. 6 we plot ROC curves for different distance mea-
sures for VQ-5 and VQ-9. The KL divergence and EMD
consistently outperform the L2-norm, with KL divergence
performing the best. Further, KL divergence, being a bin-
by-bin measure, is a lot less complex to compute than the
EMD. For this reason, we use the KL divergence as the
distance measure for all the CHoG experiments in this pa-
per. Next, this observation motivates techniques to compress
probability distributions which minimize distortion in KL
divergence.

2.3 Histogram Quantization and Compression

Our goal is to produce low bit-rate Compressed Histogram
of Gradients (CHoG) descriptors while maintaining the
highest possible recognition performance. Lossy compres-
sion of probability distributions is an interesting problem
that has not received much attention in the literature.

In this section, we discuss three different schemes for
quantization and compression of distributions: Huffman
Coding, Type Coding and Entropy Constrained Vector
Quantization (ECVQ). We note that ECVQ can achieve op-
timal rate-distortion performance and thus provide a bound
on performance of other schemes. However, ECVQ requires

Int J Comput Vis

Fig. 6 ROC curves for distance
measures for gradient-bin
configurations VQ-5 (a) and
VQ-9 (b), and spatial-bin
configuration DAISY-9. KL and
EMD consistently outperform
the conventional L2-norm used
for comparing descriptors

expensive training with the generalized Lloyd algorithm,
and requires the storage of unstructured codebooks on the
mobile device for compression. For mobile applications, the
compression scheme should require a small amount of mem-
ory and have low computational complexity. As we will see,
the two proposed schemes, Huffman Coding and Type Cod-
ing, come close to achieving the performance of optimal
ECVQ, while being of much lower complexity, and do not
require explicit storage of codebooks on the client.

Let m represent the number of gradient bins. Let P =
[p1,p2, . . . , pm] ∈ Rm+ be the original normalized his-
togram, and Q = [q1, q2, . . . , qm] ∈ Rm+ be the quantized
normalized histogram defined over the same sample space.
As mentioned earlier, we are primarily interested in the sym-
metric KL divergence as a distance measure.

For each scheme, we quantize the gradient histogram in
each cell individually and map it to an index. The indices
are then encoded with either a fixed-length code or variable-
length code. The codewords are concatenated to form the fi-
nal descriptor. We also experimented with joint coding of the
gradient histograms in different cells, but this did not yield
any practical gain. Next, for each compression scheme, we
discuss the quantization theory and implementation details,
illustrate an example and present ROC results benchmarked
against SIFT. Finally, we compare the performance of the
different schemes in a common framework.

2.3.1 Huffman Tree Coding

Given a probability distribution, one way to compress it is
to construct and store a Huffman tree built from the dis-
tribution (Gagie 2006; Chandrasekhar et al. 2009b). From
this tree, the Huffman codes, {c1, . . . , cn}, of each sym-
bol in the distribution are computed. The reconstructed dis-
tribution, Q, can be subsequently obtained as qi = 2−bi ,
where bi is the number of bits in ci . It is well known that

Huffman tree coding guarantees that D(P ||Q) < 1, where
D(P ||Q) = ∑n

i=1 pi log2
pi

qi
(Cover and Thomas 2006).

Huffman trees are strict binary trees, such that each node
has exactly zero or two children. The maximum depth of a
strict binary tree with n leaf nodes is n − 1. Therefore, a
Huffman tree can be stored in (n − 1)�log(n − 1)� bits by
storing the depth of each symbol in the Huffman tree with
a fixed length code. The depth of the last leaf node does
not need to be stored, since a Huffman tree is a strict binary
tree and

∑
qi = 1. We call this scheme Tree Depth Coding

(TDC). It was proposed in Gagie (2006).
While TDC can be used for all m, we show how to re-

duce the bit rate further for small m in Chandrasekhar et al.
(2009b). We reduce the bits needed to store a tree by enu-
merating all possible trees, and using fixed-length codes to
represent them. The number of Huffman trees T (m) utilized
by such a scheme can be estimated by considering labeling
of all possible rooted binary trees with m leaves

T (m) < m! Cm−1 (7)

where Cn = 1
n+1

(2n
n

)
is the Catalan number. Hence, the

index of a Huffman tree representing distribution P with
fixed-length encoding requires at most

RHuf(m) ≤ �log2 T (m)� ∼ m log2 m + O(m) (8)

bits to encode. For some small values of m, we can achieve
further compression by entropy coding the fixed-length tree
indices. This is because not all trees are equally likely to
occur from gradient statistics. We refer to the fixed and
variable bitrate tree enumeration schemes as the Tree Fixed
Length Coding and the Tree Entropy Coding respectively.

Implementation Quantization is implemented by a stan-
dard Huffman tree construction algorithm, requiring
O(m logm) operations, where m is the number of bins in the

Int J Comput Vis

Fig. 7 Number of bits/spatial bin for Huffman histograms using dif-
ferent schemes. Note that the same Huffman quantization scheme is
applied for all three schemes before encoding. We can obtain 25–50%
compression compared to the Tree Depth Coding representation. Note
the ranges of m in which Tree Fixed Length and Tree Entropy Coding
can be used

gradient histogram. All unique Huffman trees are enumer-
ated and their indices are stored in memory. The number of
Huffman trees for m = 3,5,7,9 are 3,75,4347 and 441675
respectively. The number of trees grows very rapidly with m

and tree enumeration becomes impractical beyond m = 9.
For m ≤ 7, we found entropy coding to be useful, result-
ing in savings of 10–20% in the bitrate. This compression
is achieved by using a context-adaptive binary arithmetic
coding. In Fig. 7, we show that we can obtain 25–50% com-
pression compared to the naive Tree Depth Coding scheme.

Example Let m = 5 corresponding to the VQ-5 gradient
bin configuration. Let P = [0.1,0.3,0.2,0.25,0.15] be the
original distribution as described by the histogram. We build
a Huffman tree on P , and thus quantize the distribution to
Q = [0.125,0.25,0.25,0.25,0.125]. The quantized distri-
bution Q is thus mapped to one of 75 possible Huffman trees
with m = 5 leave nodes. It can be communicated with a fixed
length code of �log2 75� = 7 bits.

ROC Results Figure 8 shows the performance of the Huff-
man compression scheme for the DAISY-9 configuration.
The bitrate in Fig. 8 is varied by increasing the number of
gradient bins from 5 to 9. For the DAISY-9, VQ-7 config-
uration, the descriptor at 88 bits outperforms SIFT at 1024
bits.

2.3.2 Type Quantization

The idea of type coding is to construct a lattice of distribu-
tions (or types) Q = Q(k1, . . . , km) with probabilities

qi = ki

n
, ki, n ∈ Z+,

∑

i

ki = n (9)

Fig. 8 ROC curves for compressing distributions with Huffman
scheme for the DAISY-9 configuration for the Liberty data set. The
CHoG descriptor at 88 bits outperforms SIFT at 1024 bits

and then pick and transmit the index of the type that is
closest to the original distribution P (Chandrasekhar et al.
2010c; Reznik et al. 2010). The parameter n is used to con-
trol the number/density of reconstruction points.

We note that type coding is related to the An lattice (Con-
way and Sloane 1982). The distinctive part of our problem
is the particular shape of the set that we need to quantize.
The type lattice is naturally defined within a bounded subset
of the Rm space, which is the unit (m − 1)-simplex, com-
pared to the conventional m-dimensional unit cube. This is
precisely the space containing all possible input probability
vectors. We show examples of type lattices constructed for
m = 3 and n = 1, . . . ,3 in Fig. 9.

The volume of the (m−1)-simplex that we need to quan-
tize is given by (Sommerville 1958)

Vm−1 = am−1

(m − 1)!
√

m

2m−1

∣∣∣∣
a=√

2
=

√
m

(m − 1)! . (10)

In Fig. 10, we note that the volume is rapidly decaying as
the number of bins m increases. As a result, we expect type
coding to become increasingly efficient compared to lattice
quantization over the entire unit cube as m increases. For a
detailed discussion of rate-distortion characteristics, readers
are referred to Reznik et al. (2010).

The total number of types in lattice (9) is essentially the
number of partitions of parameter n into m terms k1 + · · · +
km = n, given by a multiset coefficient:
((

m

n

))
=

(
n + m − 1

m − 1

)
. (11)

Consequently, the rate needed for encoding of types satis-
fies:

RType(m,n) ≤
⌈

log2

((
m

n

))⌉
∼ (m − 1) log2 n. (12)

Int J Comput Vis

Fig. 9 Type lattices and their
Voronoi partitions in 3
dimensions (m = 3, n = 1,2,3)

Fig. 10 Volume of m − 1-simplex compared to the m dimensional
unit cube of volume 1. We note that the volume rapidly decreases as
the number of bins increases

Next, we develop a combinatorial enumeration scheme for
fast indexing and compressed domain matching of descrip-
tors.

Quantization In order to quantize a given input distribu-
tion P to the nearest type, we use the algorithm described
below. This algorithm is similar to Conway and Sloane’s
quantizer for An lattice (Conway and Sloane 1982), but it
works within a bounded subset of Rm.

1. Compute numbers (best unconstrained approximation)

k′
i =

⌊
npi + 1

2

⌋
, n′ =

∑

i

k′
i .

2. If n′ = n we are done. Otherwise, compute errors

δi = k′
i − npi,

and sort them such that

−1

2
≤ δj1 ≤ δj2 ≤ · · · ≤ δjm <

1

2
.

3. Let d = n′ − n. If d > 0 then we decrement d values k′
i

with largest errors

kji
=

[
k′
ji

j = 1, . . . ,m − d − 1,

k′
ji

− 1 i = m − d, . . . ,m,

otherwise, if d < 0 we increment |d| values k′
i with

smallest errors

kji
=

[
k′
ji

+ 1 i = 1, . . . , |d|,
k′
ji

i = |d| + 1, . . . ,m.

Enumeration of Types We compute a unique index
ξ(k1, . . . , km) for a type with coordinates k1, . . . , km using:

ξ(k1, . . . , kn) =
n−2∑

j=1

kj −1∑

i=0

((
m − j

n − i − ∑j−1
l=1 kl

))
+ kn−1. (13)

This formula follows by induction (starting with m = 2,3,
etc.), and it implements lexicographic enumeration of types.
For example:

ξ(0,0, . . . ,0, n) = 0,

ξ(0,0, . . . ,1, n − 1) = 1,

. . .

ξ(n,0, . . . ,0,0) =
((

m

n

))
− 1.

This direct enumeration allows encoding/decoding opera-
tions to be performed without storing any “codebook” or
“index” of reconstruction points.

Implementation We implement enumeration of types ac-
cording to (13) by using an array of precomputed multiset
coefficients. This reduces complexity of enumeration to just
about O(n) additions. In implementing type quantization,
we observed that the mismatch d = n′ − n is typically very
small, and so instead of performing full sorting step 2, we

Int J Comput Vis

simply search for d largest or smallest numbers. With such
optimization, the complexity of the algorithm becomes close
to O(m), instead of O(m logm) implied by the use of full
search.

We also found it useful to bias type distributions as fol-
lows

qi = ki + β

n + βm
(14)

where parameter β ≥ 0 is called the prior. The most com-
monly used values of β in statistics are Jeffrey’s prior β =
1/2, and Laplace prior β = 1. A value of parameter β that
works well is the scaled prior β = β0

n
n0

, where n0 is the
total number of samples in the original (non-quantized) his-
togram, and β0 = 0.5 is the prior used in computation of
probabilities P . Finally, for encoding of type indices, we
use both fixed-length and entropy coding schemes. We find
that entropy coding with an arithmetic coder saves approxi-
mately 10–20% in the bitrate. When fixed-length codes are
used, we can perform fast compressed domain matching.

Example Let m = 5, corresponding to the VQ-5 gra-
dient bin configuration. Let the original type described
by the histogram be T = [12,28,17,27,16] and P =
[0.12,0.28,0.17,0.27,0.16] be the corresponding distri-
bution. Let n = 10 be the quantization parameter cho-
sen for type coding. The approximation of the type T is
K = [1,3,2,3,2] based on Step (1) of the quantization al-
gorithm. Since

∑
i ki
= 10, we use the proposed quantiza-

tion algorithm to obtain quantized type K = [1,3,2,3,1].
The number of samples n0 in the original histogram is
100, and hence, the scaled prior is computed as β = 0.5 ×
10/100 = 0.05, and the quantized distribution with prior is
Q = [0.1024,0.298,0.2,0.2976,0.1024]. The total number
of quantized types is

(14
4

) = 1001, and Q can be communi-
cated with a fixed length code of �log2 1001� = 10 bits.

ROC Results Figure 11(a) illustrates the advantage of us-
ing biased types (14). Figure 11(b) shows performance of
the type compression scheme for the DAISY-9, VQ-7 con-
figuration. The bitrate in Fig. 11(b) is varied by changing
type quantization parameter n. For this configuration, the
descriptor at 60 bits outperforms SIFT at 1024 bits.

2.3.3 Entropy Constrained Vector Quantization

We use ECVQ designed with the generalized Lloyd algo-
rithm (Chou et al. 1989) to compute a bound on the per-
formance that can be achieved with the CHoG descriptor
framework. The ECVQ scheme is computationally complex,
and it is not practical for mobile applications.

The ECVQ algorithm resembles k-means clustering in
the statistics community, and, in fact, contains it as a special
case. Like k-means clustering, the generalized Lloyd algo-
rithm assigns data to the nearest cluster centers, next com-
putes new cluster centers based on this assignment, and then
iterates the two steps until convergence is reached. What dis-
tinguishes the generalized Lloyd algorithm from k-means is
a Lagrangian term which biases the distance measure to re-
flect the different number of bits required to indicate dif-
ferent clusters. With entropy coding, likely cluster centers
will need fewer bits, while unlikely cluster centers require
more bits. To properly account for bitrate, cluster probabil-
ities are updated in each iteration of the generalized Lloyd
algorithm, much like the cluster centers. We show how the
ECVQ scheme can be adapted to the current CHoG frame-
work.

Let Xm = [p1,p2,p3, . . . , pm] ∈ Rm+ denote a normal-
ized histogram. Let PXm be the distribution of Xm. Let ρ

be the distance measure used to compare histograms. Let
λ be the Lagrange multiplier. Let ψ be an index set, and
let α : Xm �→ ψ quantize input vectors to indices. Let
β : ψ �→ C map indices to a set of centroids C ∈ Rm+ . Let
the initial size of the codebook be K = |ψ |. Let γ (i) be the
rate of transmitting centroid i, i ∈ ψ .

Fig. 11 (a) shows the ROC
curves of a type coded CHoG
descriptor with and without
priors. The performance of the
descriptor is better with the
scaled prior. (b) shows ROC
curves for compressing
distributions with type coding
scheme for DAISY-9 and VQ-7
configuration for Liberty data
set. CHoG descriptor at 60 bits
outperforms SIFT at 1024 bits

Int J Comput Vis

The iterative algorithm used is discussed below. The in-
put of the algorithm is a set of points Xm, and the output
is the codebook C = {β(i)}i∈ψ . We initialize the algorithm
with C as K random points and γ (i) = log2(K).

1. α(xn) = arg mini∈ψ ρ(xn,β(i)) + λ|γ (i)|
2. |γ (i)| = − log2 PXn(α(Xn) = i)

3. β(i) = E[Xm|α(Xm) = i]
We repeat Steps (1)–(3) until convergence. Step (1) is
the “assignment step”, and Steps (2) and (3) are the “re-
estimation steps” where the centroids β(i) and rates γ (i)

are updated. In Chandrasekhar et al. (2009b), we show that
comparing gradient histograms with symmetric KL diver-
gence provides better ROC performance than using L1 or
L2-norm. It is shown in Banerjee et al. (2004), Rebollo-
Monedero (2007) that the Lloyd algorithm can be used for
the general class of distance measures called Bregman di-
vergences. Since the symmetric KL-divergence is a Breg-
man divergence, it can be used as the distance measure in
step (1) and the centroid assignment step (3) is nevertheless
optimal.

Implementation We start with an initial codebook size of
K = 1024 and sweep across λ to vary the bitrate for each
gradient configuration. The rate decreases and the distor-
tion increases as we increase the parameter λ. The algorithm
itself reduces the size of the codebook as λ increases be-
cause certain cells become unpopulated. We add a prior of
β0 = 0.5 to all bins to avoid singularity problems. Once the
histogram is quantized and mapped to an index, we entropy
code the indices with an arithmetic coder. Entropy coding
typically provides a 10–20% reduction in bitrate compared
to fixed length coding. The compression complexity of the
scheme is O(mk), where k is the number of cluster centroids
and m is the number of gradient bins. Note that this search
required to find the representative vector in the unstructured
codebook is expensive, and hence, is not suitable for mobile
applications.

ROC Results We show the performance of this scheme in
Fig. 12 for the DAISY-9, VQ-7 configuration. In Fig. 12, the
bitrate is varied by increasing λ with an initial codebook size
of K = 1024. For λ = 0, we represent the descriptor with
fixed-length codes in 90 bits. For this configuration, the de-
scriptor at 56 bits outperforms SIFT at 1024 bits. Next, we
compare the performance of the different histogram com-
pression schemes.

2.3.4 Comparisons

For each scheme, we compute ROC curves for different
gradient binning (VQ-3,5,7,9), spatial binning (DAISY-
9,13,17) and quantization parameters. For a fair compari-
son at the same bitrate, we consider the Equal Error Rate

Fig. 12 ROC curves for compressing distributions with Lloyd scheme
for DAISY-9 and VQ-7 configuration for the Liberty data set. CHoG
descriptor at 56 bits outperforms SIFT at 1024 bits

(EER) point on the different ROC curves. The EER point
is defined as the point on the ROC curve where the miss
rate (1− correct match rate) and the incorrect match rate are
equal. For each scheme, we compute the convex hull over
the parametric space, and plot the bitrate-EER trade-off: the
lower the curve, the better the performance of the descriptor.

We observe in Fig. 14(a) that Lloyd ECVQ performs best,
as expected. Next, we observe that both Huffman coding
and type coding schemes come close to the bound provided
by Lloyd ECVQ. The type coding scheme outperforms the
Huffman coding scheme at high bitrates. With type coding,
we are able to match the performance of 1024-bit SIFT with
about 60 bits.

In summary, we proposed two low-complexity quantiza-
tion and compression schemes that come close to achieving
the bound of optimal ECVQ. For each m-bin distribution,
Huffman coding is O(m logm) in complexity, while Type
Coding is O(m). Both schemes do not require storage of
codebooks on the mobile device, unlike ECVQ.

Finally, for reducing both speed and memory consump-
tion, we would like to operate on descriptors in their com-
pressed representation. We refer to this as compressed do-
main matching. Doing so means that the descriptor need not
be decompressed during comparisons.

2.4 Compressed Domain Matching

As shown in Sect. 2.3, we can represent the index of the
quantized distribution with fixed length codes when n is suf-
ficiently small. To enable compressed domain matching, we
pre-compute and store the distances between the different
compressed distributions. This allows us to efficiently com-
pute distances between descriptors by using indices as look-
ups into a distance table. Since the distance computation
only involves performing table look-ups, more effective his-
togram comparison measures like KL divergence and Earth

Int J Comput Vis

Mover’s Distance (EMD) can be used with no additional
computational complexity. Figure 13 illustrates compressed
domain matching for the VQ-5 bin configuration and quan-
tization with Huffman trees.

3 Experimental Results

In this section, we present a comprehensive survey of several
low bitrate schemes proposed in the literature, and compare
them in a common framework. First, we present feature-
level ROC performance in Sect. 3.1, followed by image re-
trieval experiments in Sect. 3.2.

3.1 Feature Level Experiments

Here, we demonstrate that CHoG outperforms several other
recent compression schemes over a wide range of bitrates.
To make a fair comparison, we compare the Equal Er-
ror Rate (EER) for various schemes at the same bit rate.
Figure 14(b) compares CHoG against SIFT compression
schemes proposed in the literature. Figure 14(c) compares
CHoG against other low bitrate descriptors. Here, we de-
scribe each scheme briefly, with a short discussion of its
merits and drawbacks. For a more detailed description, read-
ers are referred to Chandrasekhar et al. (2009b, 2010b).
Table 1 also summarizes the key results for the different
schemes.

SIFT Compression SIFT compression schemes can be
broadly classified into three categories: hashing, transform
coding and vector quantization.

– Hashing. We consider three hashing schemes: Local-
ity Sensitive Hashing (LSH) (Yeo et al. 2008), Similar-
ity Sensitive Coding (SSC) (Shakhnarovich and Darrell
2005) and Spectral Hashing (SH) (Weiss et al. 2008). For
LSH, the number of bits required to match the perfor-
mance of SIFT is close to the size of the 1024-bit SIFT
descriptor itself. While SSC and SH perform better than
LSH at low bitrates, the performance degrades at higher
bitrates due to overtraining. We note in Fig. 14(b), that
there is a significant gap in performance between SIFT
hashing schemes and CHoG. Hashing schemes provide
the advantage of being able to compare descriptors us-
ing Hamming distances. However, note that one of the
fastest techniques for computing Hamming distances is
using look-up tables, a benefit that the CHoG descriptor
also provides.

– Transform Coding. We propose transform coding of
SIFT descriptors in Chandrasekhar et al. (2009a, 2010b).
In Chandrasekhar et al. (2009a), we observe that PCA
does not work well for SIFT descriptors due to its highly
non-Gaussian statistics. We explore a transform based

Table 1 Results for different compression schemes. “Number of bits”
column refers to the number of bits required to match the performance
of 1024-bit SIFT. “Training” refers to whether or not the compression
scheme requires training. “Complexity” refers to the number of opera-
tions required to compress each descriptor. “CDM” is Compressed Do-
main Matching. N is the number of hash-bits for the hashing schemes
including BRIEF. d = 128 for SIFT schemes, d = 64 for SURF, d = 63
for CHoG. C = size of codebook for PQ scheme. B = breadth of
TSVQ. D = depth of TSVQ

Scheme # of bits Training Complexity CDM

SIFT-LSH 1000 – O(Nd)
√

SIFT-SSC –
√

O(Nd)
√

SIFT SH –
√

O(Nd)
√

SIFT-PCA 200
√

O(d2) –

SIFT-ICA 160
√

O(d2) –

SIFT-PQ 160
√

O(Cd)
√

SIFT-TSVQ –
√

O(BDd)
√

SURF-PCA –
√

O(Ed) –

BRIEF – – O(N)
√

CHoG 60 – O(d)
√

on Independent Component Analysis (ICA) in Chan-
drasekhar et al. (2010b), which performs better than con-
ventional PCA. With ICA, we can match the performance
of SIFT at 160 bits.

– Vector Quantization. Since the SIFT descriptor is high di-
mensional, Jegou et al. (2010) propose decomposing the
SIFT descriptor directly into smaller blocks and performs
VQ on each block. The codebook index of each block
is stored with fixed-length codes. The Product Quan-
tizer (PQ) works best among all the SIFT compression
schemes. We note in Fig. 14(b) that the PQ matches
the performance of SIFT at 160 bits (the same bitrate
is also reported in Jegou et al. (2010)). At 160 bits, the
SIFT descriptor is divided into 16 blocks, with 10 bits for
each block. The size of the codebook for each block is
103, making it three orders of magnitude more complex
than the CHoG descriptor as reported in Table 1. Fur-
ther, there is still a significant gap in performance from
CHoG at that bitrate. Another scheme uses a Tree Struc-
tured Vector Quantizer (TSVQ) with a million nodes. At
20 bits/descriptor, the error rate of this scheme is very
high compared to other schemes. VQ based schemes re-
quire storage of codebooks, which might not be feasible
on memory-limited mobile devices.

SURF Compression We explore compression of SURF de-
scriptors in Chandrasekhar et al. (2009a). Transform Coding
of SURF performs the best at low bitrates. The compression
pipeline first applies a Karhunen-Lòeve Transform (KLT)
transform (or PCA) to decorrelate the different dimensions
of the feature descriptor. This is followed equal step size
quantization of each dimension, and entropy coding.

Int J Comput Vis

Fig. 13 Block diagram of
compressed domain matching.
The gradient histogram is first
quantized, and mapped to an
index. The indices are used to
look-up the distance in a
precomputed table. This figure
illustrates compressed domain
matching with Huffman tree
quantization

Fig. 14 Comparison of EER versus bit-rate for all compression
schemes. Better performance is indicated by a lower EER. CHoG-
Huffman and CHoG-Type perform close to optimal CHoG-ECVQ.

CHoG outperforms all SIFT compression schemes, SURF compres-
sion schemes, MPEG-7 image signatures and patch compression over
a wide range of bitrates

Patch Compression One simple approach to reduce bit rate
is to use image compression techniques to compress canon-
ical patches extracted from interest points. We compress
32 × 32 pixel patches with DA-PBT (Direction Adaptive
Partition Block Transform), which is shown to perform bet-
ter than JPEG (Makar et al. 2009). We compute a 128-
dimensional 1024-bit SIFT descriptor on the reconstructed
patch. CHoG outperforms patch compression across all bi-
trates.

MPEG-7 Image Signature As part of the MPEG-7 stan-
dard, Brasnett and Bober (2007) propose a 60-bit signature
for patches extracted around Difference-of-Gaussian (DoG)
interest points and Harris corners. The proposed method
uses the Trace transform to compute a 1D representation
of the image, from which a binary string is extracted us-
ing a Fourier transform. We observe in Chandrasekhar et al.
(2010a) that the descriptor is robust to simple image modifi-

cations like scaling, rotation, cropping and compression, but
is not robust to changes in perspective and other photometric
distortions present in the Liberty data sets. At 60 bits, there
is a significant gap in performance between MPEG-7 image
signatures and CHoG.

BRIEF The BRIEF descriptor was proposed by Calonder
et al. (2010) in their recent work. Each bit of the descrip-
tor is computed by considering signs of simple intensity
difference tests between pairs of points sampled from the
patch. As recommended by the authors, the sampling points
are generated from an isotropic Gaussian distribution with
σ 2 = S2/25, where S = 64 is the size of the patch. Sim-
ple intensity difference based descriptors do not provide
the robustness of Histogram-of-Gradient descriptors, and we
note that there is a significant gap in performance between
BRIEF and other schemes.

Int J Comput Vis

Fig. 15 Example image pairs from the dataset. A clean database pic-
ture (top) is matched against a real-world picture (bottom) with various
distortions

Table 1 summarizes the key results from Fig. 14. We note
that CHoG provides the key benefits required for mobile ap-
plications: it is highly discriminative at low bitrates (matches
SIFT at 60 bits), it has low complexity (linear in dimension-
ality of the descriptor), it requires no training and supports
compressed domain matching. Next, we discuss the perfor-
mance of CHoG in a practical mobile visual search applica-
tion.

3.2 Retrieval Experiments

In this section, we show how the low bit-rate CHoG de-
scriptors enable novel, efficient mobile visual search appli-
cations. For such applications, one approach is to transmit
the JPEG compressed query image over the network. An al-
ternate approach is to extract feature descriptors on the mo-
bile device and transmit them over the network as illustrated
in Fig. 1. Feature extraction can be carried out quickly (< 1
second) on current generation phones making this approach
feasible (Girod et al. 2010; Tsai et al. 2010). In this section,
we study the bitrate trade-offs for the two approaches.

For evaluation, we use 3 data-sets from the literature.

– University of Kentucky (UKY) The UKY dataset has
10200 images of CDs, flowers, household objects, key-
boards, etc. (Nistér and Stewénius 2006). There are 4 im-
ages of each object. We randomly select a set of 1000
images as query images of resolution 640 × 480 pixels.

– Zurich Building Database (ZuBuD) The ZuBuD database
has 1005 images of 201 buildings in Zurich (Shao et al.
2003). There are 5 views of each building. The data set
contains 115 query images of resolution 640×480 pixels.

– Stanford Product Search (SPS) The Stanford Product
Search System is a low latency mobile product search sys-
tem (Tsai et al. 2010; Girod et al. 2010). The database
consists of one million CD/DVD/book cover images. The
query data set contains 1000 images, of 500 × 500 pixels
resolution, some illustrated in Fig. 15.

We briefly describe the retrieval pipeline for CHoG
descriptors which resembles the state-of-the-art proposed

in Nistér and Stewénius (2006), Philbin et al. (2008). We
train a vocabulary tree (Nistér and Stewénius 2006) with
depth 6 and branch factor 10, resulting in a tree with 106

leaf nodes. For CHoG, we use symmetric KL divergence as
the distance in the clustering algorithm as KL distance per-
forms better than L2 norm for comparing CHoG descriptors.
Since symmetric KL is a Bregman divergence (Banerjee et
al. 2004), it can be incorporated directly into the k-means
clustering framework. For retrieval, we use the standard
Term Frequency-Inverse Document Frequency (TF-IDF)
scheme (Nistér and Stewénius 2006) that represents query
and database images as sparse vectors of visual word occur-
rences, and compute a similarity between each query and
database vector. We use geometric constraints to rerank the
list of top 500 images (Jegou et al. 2008). The top 50 query
images are subject to pairwise matching with a RAndom
SAmple Consensus (RANSAC) affine consistency check.
The parameters chosen enable <1 second server-latency,
critical for mobile visual search applications.

It is relatively easy to achieve high precision (low false
positives) for visual search applications. By requiring a min-
imum number of feature matches after RANSAC geometric
verification step, we obtain neglibly low false positive rates.
We define Recall as the percentage of query images correctly
retrieved from our pipeline. We wish to study the Recall (at
close to 100% precision) vs. query size trade-offs—a high
recall for small query sizes is desirable.

We compare three different schemes: (a) Transmitting
JPEG compressed images, (b) Transmitting uncompressed
SIFT descriptors and (c) Transmitting CHoG descriptors.
Figure 16 shows the performance of the three schemes for
the different data sets. For Scheme (a), we transmit a grey-
scale JPEG compressed image accross the network. The bi-
trate is varied by changing the quality of JPEG compres-
sion. Feature extraction and matching are carried out on the
JPEG compressed image on the server. We observe that the
performance of the scheme deteriorates rapidly at low bi-
trates. At low bitrates, interest point detection fails due to
blocking artifacts introduced by JPEG image compression.
For Schemes (b) and (c), we extract descriptors on the mo-
bile device and transmit them over the network. The bi-
trate is varied by varying the number of descriptors from
50 to 700. We pick the features with the highest Hessian
response (Lowe 2004) for a given feature budget. We ob-
serve that transmitting 1024-bit SIFT descriptors is almost
always more expensive than transmitting the entire JPEG
compressed image. For Scheme (c), we use a low bit-rate
Type coded CHoG descriptor. We use spatial bin configu-
ration DAISY-9, gradient bin configuration VQ-7 and type
coding parameter n = 7, which generates a ∼70-bit descrip-
tor. We achieve a peak recall of 96%, 94% and 75% for
the SPS, ZuBuD and UKY data sets respectively. In each
case, we get over an order of magnitude data reduction with

Int J Comput Vis

Fig. 16 Recall vs. Query Size for the Stanford Product Search (SPS),
Zurich Building (ZuBuD) and University of Kentucky (UKY) data sets.
High recall at low bitrates is desirable. Note that the retrieval perfor-

mance of CHoG is similar to SIFT and JPEG compression schemes,
while providing an order of magnitude reduction in data

Table 2 Transmission times for different schemes at varying network
uplink speeds

Scheme Upload Time (s) Upload Time (s)

(20 kbps link) (60 kbps link)

JPEG+SIFT 20.0 6.7

SIFT 32.0 10.7

CHoG 1.6 0.5

CHoG descriptors, compared to JPEG compressed images
or SIFT descriptors. E.g., for the SPS data set, with CHoG,
we reduce data by 16× compared to SIFT, and 10× com-
pared to JPEG compressed images.

Finally, we compare transmission times for typical cel-
lular uplink speeds in Table 2 for the different schemes.
Here, we consider the 96% highest recall point where 4 KB
of CHoG data are transmitted for the SPS data set. For a
slow 20 kbps link, we note that the difference in latency be-
tween CHoG and the other schemes is about 20 seconds.
We conclude that transmitting CHoG descriptors reduces
query latency significantly for mobile visual search appli-
cations.

4 Conclusion

We have proposed a novel low bitrate CHoG descriptor in
this work. The CHoG descriptor is highly discriminative at
low bitrates, is low in complexity, and can be matched in
the compressed domain, making it ideal for mobile appli-
cations. Compression of probability distributions is one of
the key ingredients of the problem. To this end, we study
quantization and compression of probability distributions,
and propose two low complexity schemes: Huffman cod-
ing, and type coding, which perform close to optimal Lloyd
Max Entropy Constrained Vector Quantization. We perform

a comprehensive survey of several low bit-rate schemes and
show that CHoG outperforms existing schemes at lower or
equivalent bit rates. We implement the CHoG descriptor in
a mobile image retrieval system, and show that CHoG fea-
ture data are an order of magnitude smaller than compressed
JPEG images or SIFT feature data.

Acknowledgements We would like to thank Jana Košecka (George
Mason University), Ramakrishna Vedantham, Natasha Gelfand, Wei-
Chao Chen, Kari Pulli (Nokia Research Center, Palo Alto), Ngai-Man
Cheung and Mina Makar (Stanford University) for their valuable input.

References

Amazon (2007). SnapTell. http://www.snaptell.com.
Banerjee, A., Merugu, S., Dhillon, I., & Ghosh, J. (2004). Cluster-

ing with Bregman divergences. Journal of Machine Learning Re-
search, 234–245.

Bay, H., Tuytelaars, T., & Gool, L. V. (2006). SURF: speeded up ro-
bust features. In Proc. of European conference on computer vision
(ECCV), Graz, Austria.

Bay, H., Ess, A., Tuytelaars, T., & Gool, L. V. (2008). Speeded-up ro-
bust feature. Computer Vision and Image Understanding, 110(3),
346–359. http://dx.doi.org/10.1016/j.cviu.2007.09.014.

Brasnett, P., & Bober, M. (2007). Robust visual identifier using the
trace transform. In Proc. of IET visual information engineering
conference (VIE), London, UK.

Calonder, M., Lepetit, V., & Fua, P. (2010). Brief: binary robust inde-
pendent elementary features. In Proc. of European conference on
computer vision (ECCV), Crete, Greece.

Chandrasekhar, V., Takacs, G., Chen, D. M., Tsai, S. S., & Girod, B.
(2009a). Transform coding of feature descriptors. In Proc. of vi-
sual communications and image processing conference (VCIP),
San Jose, California.

Chandrasekhar, V., Takacs, G., Chen, D. M., Tsai, S. S., Grzeszczuk,
R., & Girod, B. (2009b). CHoG: compressed histogram of
gradients—a low bit rate feature descriptor. In Proc. of IEEE con-
ference on computer vision and pattern recognition (CVPR), Mi-
ami, Florida.

Chandrasekhar, V., Chen, D. M., Lin, A., Takacs, G., Tsai, S. S., Che-
ung, N. M., Reznik, Y., Grzeszczuk, R., & Girod, B. (2010a).
Comparison of local feature descriptors for mobile visual search.

http://www.snaptell.com
http://dx.doi.org/10.1016/j.cviu.2007.09.014

Int J Comput Vis

In Proc. of IEEE international conference on image processing
(ICIP), Hong Kong.

Chandrasekhar, V., Makar, M., Takacs, G., Chen, D., Tsai, S. S., Che-
ung, N. M., Grzeszczuk, R., Reznik, Y., & Girod, B. (2010b).
Survey of SIFT compression schemes. In Proc. of international
mobile multimedia workshop (IMMW), IEEE international con-
ference on pattern recognition (ICPR), Istanbul, Turkey.

Chandrasekhar, V., Reznik, Y., Takacs, G., Chen, D. M., Tsai, S.
S., Grzeszczuk, R., & Girod, B. (2010c). Study of quantization
schemes for low bitrate CHoG descriptors. In Proc. of IEEE in-
ternational workshop on mobile vision (IWMV), San Francisco,
California.

Chou, P. A., Lookabaugh, T., & Gray, R. M. (1989) Entropy con-
strained vector quantization. IEEE Transactions on Acoustics,
Speech and Signal Processing, 37(1).

Conway, J. H., & Sloane, N. J. A. (1982). Fast quantizing and decoding
algorithms for lattice quantizers and codes, IEEE Transactions on
Information Theory IT28(2), 227–232.

Cover, T. M., & Thomas, J. A. (2006). Wiley series in telecommunica-
tions and signal processing. Elements of information theory. New
York: Wiley-Interscience.

Dalal, N., & Triggs, B. (2005). Histograms of oriented gradients for
human detection. In Proc. of IEEE conference on computer vision
and pattern recognition (CVPR), San Diego, CA.

Erol, B., Antúnez, E., & Hull, J. (2008). Hotpaper: multimedia inter-
action with paper using mobile phones. In Proc. of the 16th ACM
multimedia conference, New York, NY, USA.

Freeman, W. T., & Roth, M. (1994). Orientation histograms for hand
gesture recognition. In Proc. of international workshop on auto-
matic face and gesture recognition (pp. 296–301).

Gagie, T. (2006). Compressing probability distributions. Informa-
tion Processing Letters, 97(4), 133–137. http://dx.doi.org/10.
1016/j.ipl.2005.10.006.

Girod, B., Chandrasekhar, V., Chen, D. M., Cheung, N. M.,
Grzeszczuk, R., Reznik, Y., Takacs, G., Tsai, S. S., & Vedantham,
R. (2010). Mobile visual search. IEEE signal processing maga-
zine. Special Issue on Mobile Media Search, under review.

Google (2009) Google Goggles. http://www.google.com/mobile/
goggles/.

Graham, J., & Hull, J. J. (2008). Icandy: a tangible user interface for
itunes. In Proc. of CHI ’08: extended abstracts on human factors
in computing systems, Florence, Italy.

Hua, G., Brown, M., & Winder, S. (2007). Discriminant embedding
for local image descriptors. In Proc. of international conference
on computer vision (ICCV), Rio de Janeiro, Brazil.

Hull, J. J., Erol, B., Graham, J., Ke, Q., Kishi, H., Moraleda, J., & Olst,
D. G. V. (2007). Paper-based augmented reality. In Proc. of the
17th international conference on artificial reality and telexistence
(ICAT), Washington, DC, USA.

Jegou, H., Douze, M., & Schmid, C. (2008). Hamming embedding and
weak geometric consistency for large scale image search. In Proc.
of European conference on computer vision (ECCV), Berlin, Hei-
delberg.

Jegou, H., Douze, M., & Schmid, C. (2010). Product quantization for
nearest neighbor search. IEEE Transactions on Pattern Analysis
and Machine Intelligence, accepted.

Johnson, M. (2010). Generalized descriptor compression for storage
and matching. In Proc. of British machine vision conference
(BMVC).

Ke, Y., & Sukthankar, R. (2004). PCA-SIFT: a more distinctive repre-
sentation for local image descriptors. In Proc. of conference on
computer vision and pattern recognition (CVPR) (Vol. 02, pp.
506–513). Washington: IEEE Computer Society.

Kooaba (2007) Kooaba. http://www.kooaba.com.
Kullback, S. (1987). The Kullback-Leibler distance. The American

Statistician, 41, 340–341.

Lowe, D. (1999). Object recognition from local scale-invariant fea-
tures. In Proc. of IEEE conference on computer vision and pattern
recognition (CVPR), Los Alamitos, CA.

Lowe, D. (2004). Distinctive image features from scale-invariant key-
points. International Journal of Computer Vision, 60(2), 91–110.

Makar, M., Chang, C., Chen, D. M., Tsai, S. S., & Girod, B. (2009).
Compression of image patches for local feature extraction. In
Proc. of IEEE international conference on acoustics, speech and
signal processing (ICASSP), Taipei, Taiwan.

Mikolajczyk, K., & Schmid, C. (2005). Performance evaluation
of local descriptors. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 27(10), 1615–1630. http://dx.doi.org/
10.1109/TPAMI.2005.188.

Mikolajczyk, K., Tuytelaars, T., Schmid, C., Zisserman, A., Matas, J.,
Schaffalitzky, F., Kadir, T., & Gool, L. V. (2005). A comparison of
affine region detectors. International Journal of Computer Vision,
65(1–2), 43–72. http://dx.doi.org/10.1007/s11263-005-3848-x.

Nistér, D., & Stewénius, H. (2006). Scalable recognition with a vocab-
ulary tree. In Proc. of IEEE conference on computer vision and
pattern recognition (CVPR), New York, USA.

Nokia (2006). Nokia point and find. http://www.pointandfind.nokia.
com.

Philbin, J., Chum, O., Isard, M., Sivic, J., & Zisserman, A. (2008). Lost
in quantization—improving particular object retrieval in large
scale image databases. In Proc. of IEEE conference on computer
vision and pattern recognition (CVPR), Anchorage, Alaska.

Rebollo-Monedero, D. (2007). Quantization and transforms for dis-
tributed source coding. PhD thesis, Department of Electrical En-
gineering, Stanford University.

Reznik, Y., Chandrasekhar, V., Takacs, G., Chen, D. M., Tsai, S. S.,
Grzeszczuk, R., & Girod, B. (2010). Fast quantization and match-
ing of histogram-based image features. In Proc. of SPIE workshop
on applications of digital image processing (ADIP), San Diego,
California.

Rubner, Y., Tomasi, C., & Guibas, L. J. (2000). The Earth mover’s
distance as a metric for image retrieval. International Journal
of Computer Vision, 40(2), 99–121. http://dx.doi.org/10.1023/
A:1026543900054.

Shakhnarovich, G., & Darrell, T. (2005). Learning task-specific simi-
larity. Thesis.

Shao, H., Svoboda, T., & Gool, L.V. (2003). Zubud-Zürich buildings
database for image based recognition (Tech. Rep. 260). ETH
Zürich.

Sommerville, D. M. Y. (1958). An introduction to the geometry of n

dimensions. New York: Dover.
Takacs, G., Chandrasekhar, V., Gelfand, N., Xiong, Y., Chen, W.,

Bismpigiannis, T., Grzeszczuk, R., Pulli, K., & Girod, B. (2008).
Outdoors augmented reality on mobile phone using loxel-based
visual feature organization. In Proc. of ACM international con-
ference on multimedia information retrieval (ACM MIR), Canada,
Vancouver.

Tola, E., Lepetit, V., & Fua, P. (2008). A fast local descriptor for dense
matching. In Proc. of IEEE conference on computer vision and
pattern recognition (pp. 1–8). doi:10.1109/CVPR.2008.4587673.

Torralba, A., Fergus, R., & Weiss, Y. (2008). Small codes and large
image databases for recognition. In Proc. of IEEE conference
on computer vision and pattern recognition (CVPR), Anchorage,
Alaska.

Tsai, S. S., Chen, D. M., Chandrasekhar, V., Takacs, G., Cheung, N.
M., Vedantham, R., Grzeszczuk, R., & Girod, B. (2010). Mobile
product recognition. In Proc. of ACM multimedia (ACM MM),
Florence, Italy.

Weiss, Y., Torralba, A., & Fergus, R. (2008). Spectral hashing. In Proc.
of neural information processing systems (NIPS), Vancouver, BC,
Canada.

http://dx.doi.org/10.1016/j.ipl.2005.10.006
http://dx.doi.org/10.1016/j.ipl.2005.10.006
http://www.google.com/mobile/goggles/
http://www.google.com/mobile/goggles/
http://www.kooaba.com
http://dx.doi.org/10.1109/TPAMI.2005.188
http://dx.doi.org/10.1109/TPAMI.2005.188
http://dx.doi.org/10.1007/s11263-005-3848-x
http://www.pointandfind.nokia.com
http://www.pointandfind.nokia.com
http://dx.doi.org/10.1023/A:1026543900054
http://dx.doi.org/10.1023/A:1026543900054
http://dx.doi.org/10.1109/CVPR.2008.4587673

Int J Comput Vis

Winder, S., & Brown, M. (2007). Learning local image descrip-
tors. In Proc. of IEEE conference on computer vision and pat-
tern recognition (CVPR), Minneapolis, Minnesota (pp. 1–8).
doi:10.1109/CVPR.2007.382971.

Winder, S., Hua, G., & Brown, M. (2009). Picking the best daisy. In
Proc. of computer vision and pattern recognition (CVPR), Miami,
Florida.

Yeo, C., Ahammad, P., & Ramchandran, K. (2008). Rate-efficient vi-
sual correspondences using random projections. In Proc. of IEEE
international conference on image processing (ICIP), San Diego,
California.

http://dx.doi.org/10.1109/CVPR.2007.382971

	Compressed Histogram of Gradients: A Low-Bitrate Descriptor
	Abstract
	Introduction
	Descriptor Design
	Descriptor Evaluation
	Histogram-of-Gradient Based Descriptors
	Spatial Binning
	Gradient Histogram Binning
	Distance Measures

	Histogram Quantization and Compression
	Huffman Tree Coding
	Implementation
	Example
	ROC Results

	Type Quantization
	Quantization
	Enumeration of Types
	Implementation
	Example
	ROC Results

	Entropy Constrained Vector Quantization
	Implementation
	ROC Results

	Comparisons

	Compressed Domain Matching

	Experimental Results
	Feature Level Experiments
	SIFT Compression
	SURF Compression
	Patch Compression
	MPEG-7 Image Signature
	BRIEF

	Retrieval Experiments

	Conclusion
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

