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ABSTRACT 

 

In this paper, we present a frame rate up-conversion (FRUC) 
scheme that uses optical flows in forward and backward 

directions and with two different regularization parameters 

to derive alternative motion vector fields. The motion 

vectors are then assessed for their relevance, resulting in 

prediction weights assigned to each candidate motion 

vector. Multiple hypothesis reconstruction is then 

performed, where overlapping patches of pixels associated 

with multiple motion vectors are fused using their 

corresponding weights to yield pixels of an interpolated 

frame.  Four flavors of our approach are proposed having 

different tradeoffs between quality and computational 

complexity. Experiments conducted using standard test set 
show that all our schemes yield significantly higher quality 

compared to existing FRUC algorithms. 

 

Index Terms— Frame rate up-conversion, optical flow, 

regularization, multiple hypothesis, motion compensation. 

 

1. INTRODUCTION 

 

Display technologies have been steadily improving over the 

years, resulting in devices such as TVs, tablets and mobiles 

with much higher spatial resolutions, HDR capability, and 
higher refresh rates. Many commercially available TVs and 

tablets already support 120 Hz refresh rate.  High-action 

videos (e.g. sports, action movies, etc.) are typically played 

back at higher frame rates since it reduces motion blur and 

judder while maintaining smoothness during fast motion [1].  

The importance of rendering at higher frame rates also 

increases with the increase of display form-factors and 

rendering of brighter/HDR content.  

A video may have lower frame rate either because of the 

limits of the camera / production equipment, or due to 

temporal subsampling intentionally applied to make it more 

suitable for compression and transmission.  When a low 
frame rate video is received on a device, its frame rate can 

be increased by interpolating intermediate frames using a 

frame rate up-conversion (FRUC) scheme. 

Among the different categories of FRUC schemes, 

motion-compensated FRUC are most common. These 

methods typically have two main stages: (a) motion 

estimation for determining the motion vectors, and (b) 

interpolation of pixels using motion compensation.  

Optical flow algorithms are known to yield motion 
vectors with higher accuracy [2], and are employed by a 

number of FRUC schemes [3, 4, 5, 6, 7].  Lucas-Kanade 

method (LK) [8] is a classic optical flow algorithm that has 

been used in FRUC designs [5]. Local All-Pass (LAP) 

algorithm [9] is another recently proposed method that was 

shown to be superior to LK-based FRUC [5]. Among 

recently developed optical flow methods, the algorithm of 

C. Liu [10], [11] was also shown to be promising for FRUC 

designs [3]. This method uses the Iterative Reweighted 

Least Squares for solving the optical flow problem instead 

of Euler-Lagrange approach. This leads to a simpler and 

more practical implementation [11].     
The use of convolutional neural networks (CNNs) was 

also studied for the design of FRUC schemes. In [12], CNNs 

were designed to learn four 1D filters per pixel. However, 

such a scheme was shown to have enormous computational 

complexity [5] making it impractical to use.   

Most optical flow algorithms include a regularization 

parameter that controls the smoothness of the generated 

motion field [13]. However, since motion within a video 

may vary, a single regularization parameter may not yield 

accurate motion vectors across the sequence. There could be 

scenes where a lower or higher regularization may improve 
accuracy of prediction.  Many existing FRUC algorithms 

also apply optical flow only in one direction for deriving the 

motion field. However, such schemes may not yield 

accurate prediction, especially when there is irregular 

motion and there are occlusions within the sequence. 

Therefore, unlike prior approaches we do not use a 

single regularization parameter and a single optical flow 

direction. Our FRUC algorithm incorporates the following: 

1. To capture varying motion characteristics and varying 

content in a video, we use bi-directional optical flows 

with different regularization parameters, to yield 

diverse motion vector fields with different smoothness 
characteristics. 

2. We use multiple-hypothesis reconstruction process for 

fusing the results of various predictions based on 

motion vectors produced by optical flows. 

3. To drive such fusion, relevance scores are computed for 

all candidate motion vectors and are translated to 

prediction weights. 



 
Figure 1. (a) Architecture of the proposed FRUC method. (b) Illustration of multiple hypothesis reconstruction.

We shall show that combination of these techniques allow   

us to achieve improved performance over existing FRUC 

methods based on LK [5], LAP [5], and CNN [12]. 

The paper is organized as follows.  The proposed FRUC 

algorithm is described in Section 2. Experimental results 

and performance comparison with existing FRUC 
algorithms are presented in Section 3. Conclusions are 

provided in Section 4. 

 

2. PROPOSED FRUC METHOD 

 

The architecture of our FRUC algorithm is shown in 

Figure 1(a).  Different FRUC schemes can be derived from 

this architecture as discussed later in Section 2.4.  The input 

to our algorithm includes two consecutive frames, denoted 

as Ft and Ft+1, where t is a frame instance counter along 

time domain. The output is interpolated frame Ft+1 2⁄  

temporally positioned in the middle between the input 

frames. The values 𝛼1 and 𝛼2 denote the regularization 

parameters that we use with optical flow algorithms. 

 

2.1. Generation of Motion Vector Fields 

 

We use an optical flow algorithm of C. Liu [10, 11] for 

generating motion vector field. This algorithm uses a 

regularization parameter α for controlling the smoothness of 

the motion vector field.  A larger value of α yields motion 
vectors that are smoother both spatially and temporally.  As 

shown in Figure 1(a), we apply two pairs of optical flows 

with different regularization parameters 𝛼1 and 𝛼2, and they 

yield motion vector fields having different smoothness 

characteristics.   

For a given input frame pair (Ft, Ft+1) and a given α, a 

pair of optical flows can be applied in the forward and 

backward directions to yield two motion vector fields 𝑀𝑉𝐹,𝛼 

and 𝑀𝑉𝐵,𝛼  corresponding to the forward and backward 

predictions, respectively. Therefore, for 𝛼1 and 𝛼2, the 

optical flows generates four motion vector fields (MVFs): 

𝑀𝑉𝐹,𝛼1 ,  𝑀𝑉𝐵,𝛼1 , 𝑀𝑉𝐹,𝛼2, and 𝑀𝑉𝐵,𝛼2.  Additionally, we also 

consider motion vector field 𝑀𝑉0 corresponding to zero 
motion vector.  

 

2.2. Derivation of Prediction weights 

 

The MVFs may yield motion vectors that are less reliable 

for predicting a given pixel. Therefore, predictions from 

more reliable motion vectors are to be weighed higher than 

those from less reliable motion vectors.  The process of 

determining the reliability of motion vectors is described 

next, followed by the weight derivation procedure. 

Let 𝑀𝑉𝐹,𝛼𝑖(𝑥1, 𝑦1)  = (𝑢𝐹,𝛼𝑖(𝑥1, 𝑦1), 𝑣𝐹,𝛼𝑖(𝑥1, 𝑦1)) 

represent the forward motion vector associated with 

regularization parameter 𝛼𝑖 at pixel position (𝑥1, 𝑦1) in 

frame Ft, and let (𝑥2, 𝑦2) represent the predicted pixel 

position in frame Ft+1.  Since the original pixels are 

available for Ft+1, the sum of the absolute difference (SAD) 

between a window of predicted pixels and the original 

pixels at Ft+1 is computed as 

𝑆𝐴𝐷𝐹,𝛼𝑖(𝑥1, 𝑦1) = ∑ ∑ |𝐹𝑡(𝑥1 − 𝑖, 𝑦1 − 𝑗)  
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where 𝑥2 = 𝑥1 + 𝑢𝐹,𝛼𝑖(𝑥1, 𝑦1), and 𝑦2 = 𝑦1 + 𝑣𝐹,𝛼𝑖(𝑥1, 𝑦1), 

and 𝑀 is the dimension of the SAD window. We use 

𝑆𝐴𝐷𝐹,𝛼𝑖(𝑥1, 𝑦1) to measure the reliability of the motion 

vector 𝑀𝑉𝐹,𝛼𝑖(𝑥1, 𝑦1), since smaller SAD values indicates 

higher reliability.  The SAD is mapped to a weight value 

𝑤𝐹,𝛼𝑖(𝑥1, 𝑦1) as follows 

        𝑤𝐹,𝛼𝑖(𝑥1, 𝑦1) = 𝑓 (
1

𝑆𝐴𝐷𝐹,𝛼𝑖(𝑥1, 𝑦1)
),                           (2) 

where 𝑓(. ) is a smooth-step function defined as  

          𝑓(𝑥) = {
0, 𝑥 < 0

3𝑥2 − 2𝑥3 , 0 < 𝑥 < 1
1, 𝑥 > 1.

                                  (3) 

The above procedure is applied to 

𝑀𝑉𝐹,𝛼1 ,𝑀𝑉𝐵,𝛼1 ,𝑀𝑉𝐹,𝛼2 ,𝑀𝑉𝐵,𝛼2 , and 𝑀𝑉0 to yield their 

associated set of weights 𝑤𝐹,𝛼1 , 𝑤𝐵,𝛼1 , 𝑤𝐹,𝛼2 , 𝑤𝐵,𝛼2 , and 𝑤0. 

 

2.3. Multiple hypothesis reconstruction 
 

Multiple hypothesis reconstruction involves not only 

projecting a single reference pixel associated with a motion 
vector during reconstruction, but also its neighboring pixels, 

i.e., a patch. Pixels belonging to different patches can 

overlap at a given position (𝑥, 𝑦) as illustrated in 

Figure 1(b), and these overlapping pixels are then used for 

interpolating the reconstructed pixel. 

Let the patch size be 𝑝 × 𝑝.  If (𝑥′ , 𝑦′) is an arbitrary 

position in the reconstructed frame 𝐹
𝑡+
1

2
, all the overlapping 

patches at this position belong to the following set: 

𝐶(𝑥′ , 𝑦′)

= {(𝑥, 𝑦)|(𝑥 −𝑚,𝑦 − 𝑛) +
1

2
𝑀𝑉′(𝑥, 𝑦) = (𝑥′, 𝑦′), 

       𝑀𝑉′ ∈ {𝑀𝑉𝐹,𝛼1 ,𝑀𝑉𝐹,𝛼2 ,𝑀𝑉𝐵,𝛼1 , 𝑀𝑉𝐵,𝛼2 ,𝑀𝑉0}, 

        0 ≤ 𝑥 ≤ 𝑊,0 ≤ 𝑦 ≤ 𝐻, 

        ∃ (𝑚, 𝑛) where−
𝑝

2
 ≤ 𝑚, 𝑛 ≤

𝑝

2
 },                                  (4)   

where 𝑊 and 𝐻 are the width and height of the frame, 

respectively.  

The reconstructed pixel 𝐹
𝑡+
1

2

(𝑥′ , 𝑦′) is computed using 

Equation (5) by fusing multiple predictions associated with 

forward and backward motion vectors for 𝛼1 and 𝛼2, and 

zero motion vector.  In Equation (5), 𝑤𝐹,𝛼𝑖(𝑥, 𝑦) and 

𝑤𝐵,𝛼𝑖(𝑥, 𝑦) are the forward and backward prediction weights 

associated with 𝛼𝑖, respectively, and  𝑤0(𝑥, 𝑦) is the weight 

associated with zero motion vector prediction.   

 

 

 

 

2.4. Variants of the proposed FRUC method 

Following four FRUC variants are derived from Figure 1(a): 

i. Forward flow (FF): uses single optical flow for 

deriving forward motion field, and performs forward 

prediction for frame interpolation.  

ii. Forward and inverse flow (FIF): derives forward 
motion field as in FF, and derives the backward motion 

field by flipping the forward motion field.  Frame is 

interpolated using forward and backward motion fields.  

iii. Bi-directional flow (BF): derives forward and backward 

motion fields using two separate optical flows. 

iv. Dual regularization with bi-directional flow (DRBF): 

this is shown in Figure 1(a), where two regularization 

parameters are used, and for each regularization 

parameter a bi-directional flow is derived as in BF.     

 

3. EXPERIMENTAL RESULTS 
 

In our experiments, both the patch size 𝑝 and SAD window 

size 𝑀 are set to 7. For FF, FIF, and BF variants, the 
regularization parameter of the optical flow is set to 0.02, 

0.02, and 0.025, respectively.  For DRBF, the two 

regularization parameters are set to 0.02 and 0.036.  

Remaining optical flow parameters are set to the default 

values, as defined in [10].   

As in [5], the following standard test sequences 

from [14] are used: “city”, “crew”, “harbor”, “ice”, 

“soccer”, and “stockholm”.  All sequences are 4CIF 

resolution except for “stockholm”, which is 640×360. All 

sequences are temporally subsampled by two by dropping 

alternate frames.   

Our schemes are compared with the FRUC approaches 
based on Lucas-Kanade method (LK) [5], CNN [12], and 

LAP algorithm [5].  The average mean squared error (MSE) 

of the luma component per sequence for the above three 

prior-works were obtained from [5], and compared with our 

DRBF scheme in Table 1. The results show that DRBF 

yields significantly lower MSE for all test sequences. On an 

average, DRBF yields MSE that is lower by a factor of 9, 

4.7, and 9.6 compared to LK, CNN, and LAP, respectively. 

Furthermore, all of our four schemes yield significantly 

lower average MSE across all test sequences compared to 

prior-works as shown in Tables 1 and 2.  
We measure the average execution time of our four 

schemes for interpolating a frame of resolution 960×540 

using a machine with Intel i7-8850H processor and 16 GB 

RAM, using the methodology in [5].   Table 3 compares the 

execution times of our schemes with the three prior-works 

whose execution times were obtained from [5].  While our 

schemes have computation time larger than LAP and LK, 

they are significantly faster than CNN as shown in Table 3. 

Among our four schemes, FF is found to be the fastest, 
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Figure 2. Visual quality comparison of the proposed FRUC schemes: FF, FIF, BF, and DRBF.  (a) The 278th frame of the 

soccer sequence, and (b) – (e) are sections from the interpolated frames. (f) The 290th frame of the crew sequence, and (g) – 

(j) are sections from the interpolated frames.

Table 1. Average MSE of the three prior-works and the 

proposed DRBF approach. 

Sequence LK [5] CNN [12] LAP [5] DRBF 

city 111.7 79.8 62.1 18.4 

crew 806.5 406.1 522.1 77.8 

harbour 117.1 94.8 112.2 29.1 

ice 109.9 57.4 129.6 8.5 

soccer 399.5 141.6 848.3 33.0 

stockholm 77.6 60.4 54.6 12.7 

Avg. MSE 270.4 140.0 288.2 29.9 

Table 2. Average MSE and PSNR across all six test 

sequences for the proposed four FRUC schemes. 

Metric FF FIF BF DRBF 

Avg. MSE 40.0 31.0 30.3 29.9 

Avg. PSNR (dB) 34.11 35.60 35.69 35.77 

Table 3. Average execution time in seconds required for 

interpolating a frame of resolution 960×540. 

LK [5] CNN [12] LAP [5] FF FIF BF DRBF 

0.2 76204 4.3 10 11.5 19.7 38.3 

as shown in Table 3, since it uses single optical flow with 

forward prediction. Since FIF performs additional backward 

prediction using the forward flow field the computation time 

slightly increases by 15% with 1.49 dB PSNR improvement 

over FF as shown in Table 2.  Since BF uses two optical 

flows for two prediction directions, the computation time is 

almost twice that of FF with 1.58 dB PSNR improvement.  
Finally, DRBF uses BF with two regularization parameters, 

thereby increasing its computation time to almost four times 

that of FF with 1.66 dB PSNR improvement.          

Figure 2 compares the visual quality of interpolated 

frames of our four schemes using the 278
th

 and 290
th
 frames 

of soccer and crew sequences, respectively. In Figure 2(e), 

the right leg of the soccer player is shown to be better 

interpolated by DRBF, while other schemes produce severe 

artifacts as shown in Figure 2(b) – (d).  In the crew 

sequence, camera light momentary flashes only for the 289th 

frame. Since FF performs forward prediction only, the 

camera flash light propagates to the interpolated 290th 

frame, as shown in Figure 2(g).  Comparing Figure 2(h) – 

(j), interpolated face generated by DRBF is found to be less 
blurry compared to other schemes. These examples illustrate 

that although DRBF yields small PSNR gain over FIF and 

BF, it yields interpolated frames with higher visual quality.   

 

4. CONCLUSIONS 

 

In this paper, we have presented a novel FRUC algorithm 

called Dual regularization with bi-directional flow (DRBF) 

that utilizes bi-directional optical flows with two 

regularization parameters and multiple hypothesis 

reconstruction. The results show that our approach is highly 
promising, and it yields MSE that is lower by a factor of 9.6, 

9, and 4.7 compared to LAP [5], LK [5], and CNN [12] 

based schemes, respectively.  Although our approach has 

computational time larger than the LK and LAP based 

schemes, it is significantly faster than the CNN-based 

scheme.  Finally, we compare four variants of our approach 

and show that DRBF yields significantly better visual 

quality for the interpolated frames.  As future work, we plan 

to improve the speed of DRBF by designing efficient 

implementation of optical flows when using bi-directional 

and dual regularization process.  We also plan to apply our 

FRUC method to other temporal sampling conversion 
problems such as conversion between interlaced and 

progressive videos, telecine pattern detection, etc. 

  

(a) (b) (c) (d) (e) 

(f) (g) (h) (i) (j) 
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