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ABSTRACT 

Discrete Sine Transfonns of type VII (DST-VII) have recently 
received considerable interest in video coding. In this paper, 
we show that there exists a direct connection between DST­
VII and DCT-II transfonns, allowing their joint computation 
for certain transfonn sizes. This connection also yields fast 
algorithms for constructing DCT-VI and DCT-VII. 

Index Terms- KLT, DCT-II, DCT-VI, DST-VII, factor­
izations, video coding. 

1. INTRODUCTION 

The Discrete Cosine Transfonns of types II and IV are among 
most fundamental, well understood, and much appreciated 
tools in data compression. The DCT-II is used at the core of 
standards for image and video compression, such as JPEG, 
ITU-T H.26x-series, and MPEG 1-4 standards [1]. The 
DCT-IV is used in audio coding algorithms, such as ITU-T 
Rec. G.722.1, MPEG-4 AAC, and others [2]. Such transforms 
are very well studied, and a number of efficient technique ex­
ists for their computation [1, 3, 4, 5, 6, 7]. 

Much less known are so-called "odd" sinusoidal trans­
fonns: Discrete Cosine and Sine Transfonns of types V, VI, 
VII, and VIII. Existence of some of such transfonns was dis­
covered by A. Jain in 1979 [8]. A complete tabulation was de­
veloped in 1985 by Wang and Hunt [9]. However, not much 
work has followed. Surveys of related results can be found 
in [10, 3]. 

Recently, DST of types VI and VII have surfaced as useful 
tools in image and video coding. In 2010, Han, Saxena, and 
Rose have shown that DST-VII produce good approximations 
of Karhunen-Loeve Transform (KLT) for model of residual 
signals after Intra-prediction [11]. This was subsequently val­
idated in the course of experimental work on ISO/IEC/ITU-T 
High Efficiency Video Coding (HEVC) standard [12, l3]. 

The adoption of DST-VII in HEVC has prompted a dis­
cussion on the existence of fast algorithms for computing of 
such transfonns [12, 14]. This question was addressed in 
2011 by Chivukula and Reznik[15], who have established 
connection between DST-VII and DFT. 

978-1-4799-0356-6/13/$31.00 ©2013 IEEE 5642 

This paper offers an alternative solution by establishing a 
mapping between DST-VII, DCT-VI, and DCT-II. This map­
ping yields fast algorithms not only for DST-VIIVII, but also 
for DCT-VINII, as well as possible joint factorizations of 
such transfonns. The obtained mapping may also be of inter­
est from methodological standpoint, as it suggests additional 
connections between DST-VII, DCT-VI and KLT of residual 
and mixed signals. 

The rest of this paper is organized as follows. Section 2 
provides definitions. Section 3 establishes mapping between 
DCT-II, DCT-VI and DST-VII transfonns. Section 4 explains 
how this mapping can be used to construct fast algorithms. 
Discussion and concluding remarks are offered in Section 5. 

2. DEFINITIONS 

Let N be the length of data sequence. The matrices of Dis­
crete Fourier Transfonn (DFT) and Discrete Cosine and Sine 
transforms of types II, III, IV, VI, and VII will be defined as 
follows: 

DFT: [FN ] mn 
DCT-II: [cy] 

mn 
DCT-III: [cy

I]
mn 

DCT-IV: [C'zn mn 
DCT-VI: [Ct�l

]
mn = 

DCT-VII: [Ct�l
]

mn = 
DST-VI: [st

I]
mn 

DST-VII: [SVII] = N mn 

e_j2n;;n, m, n E [O, N-l] 
cos

m(
2;�

1)7r
, m, nE[O, N-l] 

(2m+ l)n7r [0 N 1] cos 2N ' m, n E , -
7r (2m+l)(n+ l) E [0 N-l] cos 4N ,m, n , 
m(2n+ l)7r [0 N] cos 2N+l ' m, n E , 
(2m+ l)n7r [0 N] cos 2N+l ' m, n E , 

. (m+l)(2n+ l)7r E [0 N-l] Sill 2N+l , m, n , 

. (2m+l)(n+ l)7r E [0 N-l] Sill 2N+l , m, n , 

In the above definitions, we have intentionally omitted 
nonnalization constants (such as y!2/N and Ai = [l/a�

�
O, 

conventionally used in definition of DCT-II) as they don't af­
fect factorization structures of the transfonns. Sub-indices N 
or N + 1 indicate lengths of the transfonns. We follow Wang 
and Hunt's convention of coupling N -point DST-VINII with 
N + I-point DCT-VINII [9]. 

As easily noticed, transfonns of types II and III, as well 
as VI and VII are closely related: 

(CII)T _ CIII. (CVI )T _ CVII . (SVI)T _ SVII 
N - N , N+l - N+l' N - N . 
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Fig. 1. Computing DCT-II of composite sizes: (a) split of 2N + I-point DCT-II into an N + I-point DCT-VI and N-point 
DST-VI; (b) computation of DCT-II of length N(2N + 1)_ 

3. RELATIONSIDP BETWEEN 2N + I-POINT 

DCT-II, N + I-POINT DCT-VI, AND N-POINT 

DST-VII TRANSFORMS 

In this section we prove the following statement. 

Theorem 1. The following holds: 

) (  
where Q2N+l is a matrix, such that when applied to a vector 

x, it produces the following sign alterations and reordering: 

Xi 

( - I ) iXN+ Hi 
i = O, _ .. , N, 
i = O, . . .  , N  - 1, 

(2) 

and IN and J N are N x N identity and order-reversal matri­

ces respectively. 

Proof Let us consider a 2N + I-long input sequence X 

Xo, . . .  , X2N, and apply DCT-II over it: 

2N 
7f(2n + I)k 

L Xn cos 
2(2N + 1) 

, k = 0 ,  . . .  , 2N. 
n=O 

5643 

We first look at even output values (k = 2i, i = 0, ... ,N): 

� 7f(2n + 1)2i 
L Xn cos 

2(2N + 1) n=O 

� 7f(2n + I)i 
L Xn cos 

2N + 1 
. 

n=O 

We split this sum as follows: 

ell � 7f(2n + I)i 
X2i - L Xn cos 

2N + 1 n=O 
2N 
� 7f(2n + I)i 
L Xn cos 

2N + 1 
n=N+ l  

� 7f(2(2N - n) + I)i 
L Xn cos 

2N + 1 
n=N+ l  
N-l ( )  � 7f 2n + 1 i 
L X2N -n cos 

2N + 1 ' 
n=O 

which implies that 
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Fig. 2. Flow-graph of Winograd's factorization of DFT of length 9, and flow-graphs of 9-point DCT-II, 5 -point DCT-VI, and 
4-point DST-VII implied by mappings (1,3). 

where XC v I is a DCT-VI transform over the first N + 1 ele­
ments of input sequence x, and X,CV1 is a DCT-VI transform 
over the following input: 

, _ [ X2N-n, xn - 0 ,  
if n = 0 ,  . . .  , N - 1, 
ifn= N. 

We now turn our attention to the odd output values (k = 
2i + 1, i = 0 ,  . . .  , N - 1): 

� 7r(2n + 1)(2i + 1) 
� Xn cos 

2( 2N + 1) n=D 

( )i+l � . 7r(N -n)(2i + 1) -1 � X2N -n Sill --'----'-'---'-

n=D 2N + 1 

We split this sum as follows: 

XCII ( )i �
l . 7r(N -n)(2i + 1) 

2i+ 1 + -1 � X2N -n Sill 
---'--2N.,....,-'+-'-1---'-n=D 

(_l)i+l � . 7r(N-n)(2i+l) 
� X2N-n Sill 2N + 1 n=N+l 

( )i 
N

2:
-l . 7r(n + 1) (2i + 1) -1 XN-l-n Sill , 2N +1 n=D 

which implies that 

where XSVll is an N-point DST-VII transform over a se­
quence 

Xn = XN+l+n, n = 0 ,  . . .  , N - 1, 
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'" 
VII and XS is an N -point DST-VII transform over a sequence 

Xn=XN-l-n, n=O, ... , N - l. 

By combining all these mappings we arrive at expression (1). 
D 

We present a flowgraph of the resulting mapping between 
DCT-II, DCT-VI, and DST-VII transforms in Figure 1.a. Only 
2N additions, permutations and sign changes are needed to 
convert output of DCT-VI, and DST-VII into DCT-II. 

4. FAST ALGORITHMS FOR COMPUTING DCT-II, 

DCT-VI, AND DST-VII 

4. 1. Connection to DFT 

From (1) it follows that fast computation of DCT-VI and DST­
VII can be reduced to computing subsets of DCT-II. Accord­
ing to Heideman [4] it is also known that computing of DCT­
II of odd numbers is equivalent to computing same-length 
DFT. Considering 2N + I-point transforms, we can summa­
rize Heideman's result as follows: 

eII - H ( [R(F2N+l)]rows D, ... ,N ) H (3) 2N+l - 1 ['2s(F )] 2, 2N+l rows N+l, ... ,2N 
where R (F2N+d and '2s (F2N+l) denote real and imaginary 
parts of the DFT transform matrix of size 2N + 1, and Hl and 
H2 are some permutation and sign-inversion matrices [4]. 

In combination with (1) this formula shows that an N + 1-
point DCT-VI, an N-point DST-VII and an 2N + I-point 
DCT-II can be computed by mapping to a 2N + I-point DFT. 
Since many algorithms for computing of DFT are readily 
available (see e.g. [16]), this automatically leads to to fast 
algorithms for computing DCT-VI and DST-VII. 



2N+1-point OCT-II 2N-point OCT-II 

(a) (b) 

Fig. 3. Conceptual illustration of decompositions of (a) 2N + I-point DCT-II (1) and (b) 2N -point DCT-II (4). 

4.2. Examples of fast algorithms for N = 4 

We use Winograd DFT module of length 9 shown in Fig­
ure 2.a. This particular factorization comes from [16]. By 
using this ftowgraph and mappings (3) and (1) we easily ob­
tain 9-point DCT-I1, 5-point DCT-VI, and 4-point DST-VII. 
This is shown in Figure 2.b. 

We note that all these algorithms are very efficient in 
terms of multiplicative complexity. Thus, obtained 9-point 
DCT-II requires only 8 non-trivial multiplications. In con­
trast, the least complex algorithms for computing DCT-ll of 
size 8 (nearest dyadic-size) requires 11 multiplications[7]. 

The obtained 4-point DST-VII is also very efficient: it 
uses only 5 multiplications. This factorization is immediately 
suitable for implementing an integer approximation of DST­
VII transform defined in HEVC standard [13]. 

Finally, factorization of a 5-point DCT-VI shown in Fig­
ure 2.b needs only 3 real multiplications and 2 shifts (multi­
plications by factors 1/2). 

4.3. Fast computing of transforms of length 2k N (2N + 1) 

It is known that a transform of a composite length N = pq, 
where p and q are co-prime, can be decomposed into a cas­
cade of p q-point transforms and q p-point transforms fol­
lowed by pq - p - q - 1 additions. This class of techniques 
is called Prime Factor Algorithms (PFA) [17, 18]. 

In Figure 1.b, we show how to compute DCT-II of length 
N(2N + 1). This factorization includes 2N + 1 N-point DCT­
II sub-transforms, and additionally N 2N + I-point DCT­
II transforms, which, in turn include N -point DST-VII as 
part of their ftowgraph. Hence, a system that implements 
and uses N-point DCT-II and DST-VII, can easily compute 
an N(2N + 1) transform by reusing them. Same principle 
more generally applies to computing transforms of lengths 
2k N(2N + 1). 

Embedded factorization structures including DST-VII 
blocks in ftowgraphs for DCT-II can be of interest to hard­
ware implementations, as it offers potential for reducing the 
area, cost, and power usage of a circuit responsible for com­
puting transforms. 
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S. DISCUSSION AND CONCLUDING REMARKS 

We notice that decomposition (1) looks very similar to the 
well-known split of even-sized DCT-I1 (see, e.g. [3]): 

(4) 

where P2N is a certain permutation matrix. This split leads 
to recursive construction due to reappearance of DCT-ll in the 
upper part of decomposition. In contrast, our decomposition 
of 2N + I-point DCT-I1 (1) does not immediately lead to a 
recursion. 

In Figure 3 we offer conceptual illustration of both de­
compositions (1) and (4). Input data samples are denoted as 
YN, ... ,YI,ZO,XI, ... ,XN in a 2N + I-point case (a), and 
YN, ... , YI, Xl, ... , XN in 2N-point case (b). It is shown that 
the lower (right) portion of DCT-I1 transform becomes es­
sentially equivalent to DST-VII (or DCT-IV) transform over 
residual samples Y; = Yi - Xi, while the upper (right) por­
tion of DCT-I1 transform becomes essentially equivalent to 
DCT-VI (or DCT-II) transform over sums: x; = Xi + Yi, 
(i = 1, . . .  , N). In the 2N + I-point case, the upper trans­
form also absorbs the middle sample ZOo 

This illustration may be insightful for understanding 
meanings of the involved transforms. For instance, in sig­
nal processing, it is customary to think of DCT-II as an 
approximation of KLT for 1-st order Markov source with 
high correlation coefficient. Decomposition in Figure 3.a 
shows that DST-VII, as well as DCT-VI (with some permuta­
tions and sign changes) can be understood as approximations 
of KLT over residual or mixed signals with progressively 
increasing distances between samples. Similarly, decom­
position in Figure 3.b shows that in case of a 2N-sample 
arrangement, it is DCT-IV and DCT-II that can be understood 
as approximations of KLT over residual and mixed signals. 

The obtained relationship (1) may also be instrumental in 
showing that DST-VII-based coding of Intra-prediction resid­
ual is essentially equivalent to performing L -shaped DCT­
II, where one part of L -shape corresponds to boundary pix­
els, and the other part absorbs pixels predicted based on this 
boundary. A design of direction-adaptive transforms based on 
similar idea was proposed in [19]. 
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