

IMPLEMENTING HLS / DASH CONTENT STEERING
AT SCALE

Yuriy Reznik, Guillem Cabrera*, Ron Zekarias, Bo Zhang, Biswa Panigrahi,
Nabajeet Barman*, Stuart Hicks*, Ted Krofssik, Andrew Sinclair, and Adam Waldron

Brightcove Inc, Boston, MA, USA
* Brightcove UK, Ltd., London, UK

ABSTRACT
Content Steering is a recent addition to both HLS and MPEG DASH
standards, enabling dynamic routing of streaming content between different
CDNs and delivery pathways. Already supported by DASH.js, HLS.js, and
several other players, it dramatically simplifies the design of multi-CDN
systems. No custom client plugins, DNS redirects, or CMS integrations are
needed. However, for HLS/DASH Content Steering method to operate, it
requires new elements: content steering servers. This paper discusses how
to design and deploy them at scale. The proposed solution effectively
reduces the logic on the content steering servers to stateless operations, in
which all state variables become parameters of the client-server exchange.
Such design enables servers to be deployed very inexpensively at the edge
(by utilizing edge functions offered by many CDNs or edge platforms). Our
proposed method is highly scalable, allows short response time, and
enables a full spectrum of multi-CDN traffic optimizations: load balancing,
failover protection, COGS- and QOE/QOS-based optimizations.

1. INTRODUCTION
Since its invention in the mid-1990s, Internet streaming has evolved from a pioneering
concept to a mainstream technology used to deliver videos to viewers today [1-6]. This
technology is exceptionally versatile. It reaches all IP-connected video devices of different
screen sizes, mobility factors, and connection types (TVs, mobiles, PCs, etc.).
The two most widely deployed variants of streaming protocols today are called HTTP Live
Streaming (HLS) [7] and Dynamic Adaptive Streaming over HTTP (DASH) [8]. Both are
international standards. Both use HTTP as the underlying network protocol and employ
Content Delivery Networks (CDNs) for media delivery [9,10]. The underlying principle is
simple: the encoded media content is placed on the origin server first, and then CDN
propagates, locally caches, and delivers it to a geographically dispersed population of
viewers. Effectively the CDN manages the scale of the delivery.
However, CDNs have some limits. Some may not be available in all relevant regions; some
may have internal capacity limits, and some may not have sufficient caches to support the
delivery of vast collections of videos to the intended audience. CDNs may sometimes also
experience outages or other technical failures, making them inaccessible for some time.
Considering such limits, large streaming operators increasingly employ multiple CDNs and
so-called "CDN switching" technologies to adjust delivery paths content dynamically for
streaming [10-12]. Among existing solutions are technologies using DNS-based switching,
dynamic manifest updates, player-based switching, custom CMS integrations, etc. However,

most existing CDN switching solutions are complex and expensive to deploy and operate
[9-13]. They also come with various drawbacks. Very few, for example, enable seamless in-
stream switching without interrupting the continuity of the playback. And they are all
proprietary, requiring much custom code to be written and supported for each deployment.
HLS / DASH Content Steering is a new standards-based technology [14-16] that promises
to dramatically simplify the design of multi-CDN streaming systems.
In this paper, we first briefly overview the Content Steering technology, explain how it works,
and explain its benefits for practical applications. We will then discuss a few challenges
arising in this technology's design and deployment at scale. We will show that such
challenges are all addressable by design turning HLS/DASH content steering servers into
stateless functions deployable by advanced CDNs or edge platforms. Such a method is
highly scalable, allows short response time, and enables a full spectrum of multi-CDN traffic
optimizations: load balancing, failover protection, COGS- and QOE/QOS-based
optimizations. The proposed design forms the basis of an open-source content steering
system implementation, currently under development and validation study by the Streaming
Video Technology Alliance (SVTA) [13,17]. We will explain the capabilities of this system,
the set of streaming clients and CDN integrations it already supports, and the utilities it brings
to the operators of streaming systems.

HLS / DASH CONTENT STEERING
HLS / DASH Content Steering is a relatively recent development. First, in April 2021, Apple
proposed a technology called "HLS Content Steering Specification" [14]. Subsequently, in
July 2022, a similar technology proposal, titled "Content Steering for DASH," was entered
for community review by DASH-IF [16]. The DASH-IF proposal was effectively a subset of
HLS content steering, preserving the syntax of the client-server exchanges. The
corresponding changes in HLS and DASH standards have been implemented over the last
two years [8,15]. As of today, Content Steering is already supported by the AVplayer
framework [18], as well as HLS.js [19] and DASH.js [20] streaming players. Reference
streams and related open-source tools are also available for the developer community
through the efforts of DASH-IF, CTA WAVE, and SVTA forums [13,17].
To illustrate how the Content Steering mechanism works, in Figure 1, we depict an example
streaming delivery system practicing it. This system employs two media CDNs, denoted

Figure 1 – DASH delivery system with two media CDNs and content steering servers

managing switching between them.

CDN1 and CDN2, respectively. The URLs (or base URLs) of such CDNs, also called
"pathways," have assigned names. In our system, we use names "alpha" and "beta" to refer
to CDN 1 and 2, respectively. Both CDNs can deliver data, but only one is active at each
moment in time. The system also deploys a server-side control element - the Content
Steering server. We show relevant manifest declarations and exchanges between players
and the steering servers in callouts.
As shown in Figure 1, the manifest defines the locations of CDNs and a steering server for
use during a streaming session. In DASH, the corresponding syntax includes redundant
BaseURL declarations and a ContentSteering descriptor:

<BaseURL serviceLocation="alpha">https://cdn1.com/</BaseURL>
<BaseURL serviceLocation="beta">https://cdn2.com/</BaseURL>
<ContentSteering defaultServiceLocation=“beta"
queryBeforeStart="true">https://steeringserver.com>
</ContentSteering>

In HLS, the corresponding syntax includes using redundant variant streams pointing to
different CDNs, with PATHWAY-ID annotations and a pointer to the steering server provided
by the #EXT-X-CONTENT-STEERING tag:

#EXTM3U
#EXT-X-CONTENT-STEERING:SERVER-URI="https://steeringserver.com",PATHWAY-ID="beta"
#EXT-X-STREAM-INF:BANDWIDTH=1280000,PATHWAY-ID="alpha"
https://cdn1.com/hi/video.m3u8
#EXT-X-STREAM-INF:BANDWIDTH=1280000,PATHWAY-ID="beta"
https://cdn2.com/hi/video.m3u8

If an HLS manifest includes several variant streams per encoding ladder, the proper practice
is to make all such variant streams available on both CDNs.

In principle, redundant variant streams and BaseURL declarations already existed in earlier
HLS and DASH standards versions. Most existing clients already recognize them and use
them to implement a basic failover logic for cases of significant network errors [21]. However,
the ContentSteering elements are new, providing specific instructions to the clients about
which CNDs to use.
When receiving a manifest with content steering elements present, the new HLS / DASH
streaming players recognize the existence of steering servers and call them during the
session. They issue HTTP GET requests to the steering server URI specified in the manifest.
As part of the request, they may include various additional parameters. The parameters
specified as recommended by both DASH and HLS specifications, are listed in Table 1.

An example of a client's request communicating such parameters to the steering server is
provided below:

GET "https://steeringserver.com?session=abc&_DASH_pathway=beta&_DASH_throughput=145000"

Table 1 – Parameters communicated by HSL/DASH clients to steering servers.
HLS parameter DASH parameter Description
_HLS_pathway_ _DASH_pathway_ ID of the last pathway used by the client

_HLS_throughput_ _DASH_throughput_ Estimated throughput [bits / sec], as observer by
the client in pulling data from the selected CDN

https://cdn1.com/
https://cdn2.com/
https://steeringserver.com/
https://steeringserver.com/
https://cdn1.com/hi/video.m3u8
https://cdn2.com/hi/video.m3u8
https://steeringserver.com/?params=abc
https://steeringserver.com/?params=abc

In this example, the client also passes the session ID as a custom parameter in addition to
the pathway and throughput parameters.
In response to receiving such a request, the content streaming server generates a response
indicating the preferred order of the CDNs (or pathways), the time to call the steering server
again (TTL), and the SERVER-URI to use when calling the server next time.
Below, we provide an example of a response that the server can generate:

{
 "VERSION": 1,
 "TTL": 300,
 "RELOAD-URI": "https://steeringserver.com?session=abc"
 "SERVICE-LOCATION-PRIORITY": ["beta", "alpha"]
}

In this example, the server instructs the client to use pathway "beta" with a higher priority for
streaming and then to call the server back in 300 seconds for the next update. The 300
seconds (5 minutes) TTL is a default response interval recommended by HLS specifications.

Once the client receives the steering server response, it checks if the top CDN specified
matches the one currently used, and if not, it implements the switch.

The above-described syntax of the steering server response and client-server interactions
are the same for HLS and DASH systems, enabling the same server to handle content
steering operations.

IMPLEMENTING HLS / DASH CONTENT STEERING SYSTEM
Next, we study the implementation aspects of a multi-CDN streaming system employing the
HLS / DASH Content Steering mechanism.
Centralized Steering Server-based Design
Figure 2 shows a possible implementation of the HLS/DASH content steering system. In this
design, a single is responsible for all steering decisions. Conceptually, this is the most
straightforward implementation of the system.
The objective of the steering server is to direct traffic to each CDN in a way that achieves
some beneficial effect. For example, it may perform failover control, increasing the system's

Figure 2 – Centralized server-based implementation of content steering system.

https://steeringserver.com/?session=abc

reliability. Or it may perform CDN load balancing, enabling broader distribution. It may also
perform QOE/QOS- or COGS-type optimizations.

The steering server may receive at least two types of input information. First, to perform
QOE or QOS-based optimizations, it will need to get QOE or QOS data about the system's
performance. The usual source of such information is the analytics engine, collecting data
from the streaming players, origin servers, and CDNs.
The other input that the steering server may receive is a set of business rules associated
with each CDNs. Such data, for example, may include contract lengths, traffic- or dollar-level
commits, per-GB edge traffic rates, etc.
Based on all such inputs, the content steering server decides how to direct traffic to achieve
the desired utility (e.g., failover, load distribution, QOE/QOS-, or COGS-based optimization).
We note that such decisions must be made periodically, as each client associated with each
active session will call the server back at the TTL interval.

Limitations of the Centralized Server-based Design
We next will note some limitations of a system depicted in Figure 2.
The first one is scalability. Let us assume, for example, that we have an event watched by
6M of concurrent viewers. Then with 300 seconds TTL, the steering server will need to
process at least 20K requests per second. That is a pretty high number! With conventional
hardware and some non-trivial logic required for deriving each steering response, it may
easily overload a single server or a cluster of servers. In other words, the architecture can't
be that simple. It will likely need many servers and appropriate autoscaling and load-
balancing logic.
The other issue is the operating cost. With the cloud-based implementation, processing each
steering response involves compute-time and bandwidth-based costs. Such expenses can
be considerable. At least as high as the costs of operating manifest origins, manifest CDNs,
and maybe more.
The related issue is the response delay of the system. Reducing steering server TTL, as we
just noted, goes against the scalability and costs of the system. Hence it will have to be
relatively long, for example, 300 seconds or even longer.
However, such a long TTL dramatically reduces the utility and effectiveness of content
steering! While 300 seconds (5 minutes) may be adequate for essential load balancing and
CDN commit management tasks, it is inadequate for other objectives, such as QOS/QOE
optimizations or rapid enough failover logic. When clients start buffering, directing them to
another CDN 5 minutes later is too late!
In other words, we observe that the centralized server implementation of the HLS / DASH
content steering method comes with many fundamental limits.

DISTRIBUTED, EDGE-BASED IMPLEMENTATION OF CONTENT STEERING
We next present an alternative implementation of the steering system addressing the above-
described limits. Figure 3 shows the overall diagram of our proposed design.
First, instead of using a single content steering server responsible for all decisions in the
system, the proposed design splits steering operations into two stages:

● The first stage. Defines the initial preferred CDN order for each new streaming
session and assigns steering servers to such sessions. We call the server (or a
cluster of servers) producing such initial decisions – the steering master.

● The second stage. This stage produces all subsequent CDN steering decisions for
each streaming session at TTL intervals. We use stateless functions and edge
computing platforms to implement all such operations.

The proposed two-stage implementation has several key benefits:
- It becomes massively scalable - as scalable as CDNs / platforms responsible for

executing edge functions;
- it also becomes much more economical to deploy - as bandwidth and per/requests

costs at CDNs or edge platforms are significantly less expensive than egress traffic
costs of cloud platforms

- it also becomes more responsive, allowing lower TTL response times between
clients and the servers.

Reducing response time is crucial for enabling many additional utilities of the system. Thus,
when TTL becomes shorter than the size of the player's buffer (e.g., 10-30 seconds), this
automatically enables QOS and QOE-type optimizations — for example, prevention of
buffering or allowing clients to use higher quality streams. Shorter response times are critical
for graceful failover behavior, disaster recovery, and many other applications.

Regarding possible deployment options, the platforms currently supporting edge processing
include AWS / CloudFront with Lambda @ Edge, Fastly's VCL, Akamai Edge Workers,
CloudFront Functions, and others [9]. With the rollouts of 3GPP MEC-based services [23]
and hybrid ecosystems such as 5G-EMERGE [24], the range of deployment options for such
architecture will likely be even broader.
However, in all cases, for a steering server to be deployable at the edge, it must be reduced
to a simple stateless function. We discuss this design aspect next.

Figure 3 – Edge-based implementation of the content steering system.

Stateless Implementation of Content Steering Servers
The critical element that enables us to turn the steering server into a stateless function is
the parameter string used for communication between the streaming client and the server.
This string can be specified as part of the SERVER-URI element in the manifest and as part
of RELOAD-URI in the steering server response.
Hence, by encoding an internal state and passing it as a parameter string to the client, the
server can recover it the next time the client calls it. Such a method allows the server to
retain the full context of the session while being invoked as a stateless function on each
client's request. We explain the dynamic of such client-server exchanges in Figure 4.
To pass an edge server an initial state, we encode such a state as part of the SERVER-URI
string in the manifest. The manifest updater module depicted in Figure 3 does this for each
new session.
In our current implementation, the edge server state variables include a few key
characteristics of the encoding profile (minimum and maximum bitrates used by its
renditions, media duration), current position in the stream, currently observed throughput
statistics of all CDNs (as specific to player's region), and the CDN priority list as defined by
the steering master. Such state variables allow our edge servers to perform in-session QOE-
type delivery optimizations while adhering, to the extent possible, to CDN priorities as set by
the steering master.
In our current implementation, we have also added a mechanism allowing CDN order
decisions to be forced centrally for all edge servers in a particular region or working with
some specific CDNs. Such a mechanism is necessary for testing, manual interventions,
disaster recovery efforts, etc.

Distributed Decision Logic
We next discuss the distribution of the decision logic across players, edge servers, and the
steering master server in our system. Figure 5 provides a diagram explaining this split.
First, we notice that streaming clients do all final switches. They follow the standards. They
recognize the presence of all CDNs/pathways as declared in the manifests and the order of
CDNs as provided by the content steering servers. They usually choose the top-priority listed
CDN/pathway for delivery. However, in some cases, the clients may also select an

Figure 4 – Exchanges between clients and steering servers carrying the session-related

state in the parameter string.

alternative CDN by picking the next one on the priority list. Usually, this happens in cases of
significant network failures or lack of responses from the default CDN [21]. Effectively, the
clients perform failover control logic.
However, each client only observes statistics for the CDN currently in use. It generally does
not know what happens simultaneously with other CDNs in the system. Such knowledge is
essential for QOS/QOE-type of optimizations. For these reasons, our system uses edge
steering servers for in-session level QOE optimizations. As explained earlier, they receive
performance statistics for all CDNs in the player's region as part of their initial state. Then
they progressively update these statistics based on throughput values reported by the
clients. With short enough TTL times, this becomes sufficient to detect degradation in the
performance of the current CDN and force switch preventing buffering.
The master steering server in our proposed system architecture is responsible for all
regional- or global-level optimizations. These include CDN load-balancing, COGS-based
optimizations, CDN contracts commit-level control, etc. Such decisions don't usually require
short TTLs, and the per-session granularity of CDN assignments is generally adequate. The
regional- or global-level failover actions may also be started at the master server and
propagated to edge servers.
With the described distribution of functions, the proposed system architecture can deliver
multiple utilities in multi-CDN traffic management while being highly scalable, responsive,
and simple to deploy and operate.

OPEN-SOURCE PROJECT IN SVTA
The essential elements of the described system – manifest updaters, steering servers, and
testing and deployment scripts are now available as an open-source project within
Streaming Video Technology Alliance (SVTA) [17]. Figure 6 shows the landing page of this
project in SVTA GitHub.

Figure 5 – Distribution of functions in a system with player-, edge-steering servers, and

master server levels of control.

This implementation supports HLS and DASH protocols and allows several deployment
options. It includes steering servers implemented as standalone servers and edge functions
deployable by AWS Lambda @ Edge. The manifest updaters allow deployments as
standalone servers or as AWS Lambdas. The system works with DASH.js [20] and
HLS.js [19] streaming players. The support for Video.js [24] and several related commercial
streaming players [25] is currently being added.
Among functions immediately supported by this open-source project are:

- QOE/QOS optimizations (prevention of buffering)
- Automatic failover functions (switches in cases of failures of either CDNs)
- Manual steering controls (forced changes of CDN priority orders).

All these functions are available from a project demo page, as shown in Figure 7.
When operating this demo, the user can specify the protocol (DASH or HLS), sample content
encoded using this protocol, and the streaming player. For testing the effectiveness of
QOS/QOE and failover functions of the system, the user activates a network proxy
/bandwidth throttling tool. By setting different network conditions for each CDN / pathway,
the user can observe the effects of failover prevention of the QOE optimization functions of
this system.
The immediate objective of this project is to provide a reference implementation of the
HLS/DASH Content-Steering-based system and use it for performance study, along with
other CDN solutions currently under investigation by the SVTA alliance [13]. Once fully
validated and tested, this project promises to become a reference that would simplify
subsequent developments and deployments of highly-scalable practical multi-CDN
streaming solutions based on HLS / DASH content steering.

Figure 6 – Content Steering at Edge project page in SVTA GitHub.

EXPERIMENTAL STUDY
This section reports preliminary experimental results using the SVTA open-source content
steering framework.
For testing, we used the well-known "Big Buck Bunny" video sequence [26]. We have
encoded it for HLS and DASH streaming using Brightcove CAE encoder [27]. The resulting
ladder included four streams with parameters listed in Table 1. We used 2-second segments
and an identical file format (CMAF) for both HLS and DASH versions of the streams.

Table 1 – Characteristics of encoded video streams used in our test experiment

Rendition Video codec Bitrate [bps] Resolution Framerate

1 H.264/AVC 4530860 1920x1080 30

2 H.264/AVC 2445034 1280x720 30

3 H.264/AVC 1419255 1024x576 30

4 H.264/AVC 783322 640x360 30

We subsequently placed all streams on two HTTP servers and with extra instrumentation
added to control their respective output bandwidth/throughputs. We called the URLs leading

Figure 7 – Test/demo page of edge-based content steering system.

to these servers "CDN-A "and "CDN-B," respectively. Figure 8 shows the pattern shape
used to modulate the bandwidth along each pathway during streaming sessions.

Figure 8 – Test pattern used to limit client-side throughput of CDNs/pathways
used for delivery.

As easily observed, the test pattern is straightforward, with CDN A being worse than CDN
B, particularly at the beginning. It also effectively tests the range of bitrates as present in the
encoding ladder (Table 1). If a player stays with CDN A longer, it will likely switch and buffer
more throughout the session. Each session is about 10 minutes long (the length of the "Big
Buc Bunny" sequence).

To measure system performance, we have instrumented streaming clients to report
standard performance metrics, such as streaming startup time, the number of buffering
events, the number of seconds spent buffering, current rendition bitrate, etc. The startup
time reflects the difference between "loadstart" and "loadeddata" events in HTML5. The rest
of the metrics are reported natively by clients (HLS.js and DASH.js, respectively).

For testing, we have considered the following possible systems/scenarios:
1) DASH playback without content steering,
2) DASH playback with SVTA edge content steering,
3) HLS playback without content steering
4) HLS playback with SVTA edge content steering.

In all cases, CDN-A served as a default (higher priority) pathway at the beginning of the test
session. We used the SVTA edge steering server to control subsequent CDN priorities
dynamically. In all cases, we repeated each session/experiment 10 times. Table 2 shows
the resulting average statistics.

Table 2 – Performance metrics and test results collected.

System under test Startup
time [ms]

Buffering
events

Buffering
seconds

Average
bitrate

Rendition
switches

DASH, no steering 1231 35 80.1 783.8 2

DASH, with content steering 1216 2 21.1 4327.1 1

HLS, no streering 1579 8 30.6 2371.3 2

HLS, with content steering 1834 1 11.5 4497.1 1

While these results are preliminary and limited to a few artificial cases, we find them highly
encouraging. We see that steering brings significant improvements in reducing the number
of buffering events and number of seconds spent buffering. We also see a significant (2-4x)
increase in the average bitrate delivered to the viewers. And interestingly enough, the
number of rendition switches is also lower due to intelligent choices of CDNs.

All these factors indicate that content steering has excellent potential for delivering improved
QOE, reliability, and effectiveness of multi-CDN delivery systems.

CONCLUSIONS
This paper reviewed the Content Steering technology recently introduced in both HLS and
DASH standards. We have discussed the advantages of this technology, and we have also
identified some challenges with its realization and deployment at scale. To address these
challenges, we have proposed a distributed deployment model utilizing edge processing
functions of modern CDNs and edge platforms. We have shown that this model is highly
scalable, allows short response time, and enables a full spectrum of multi-CDN management
functions: load balancing, failover protection, and COGS- and QOE/QOS-based
optimizations. The proposed system has been implemented and contributed to an open-
source project within Streaming Video Technology Alliance. With additional refinements,
testing, and validations performed now as a community effort, we believe it could provide a
helpful reference enabling the industry to accelerate developments and deployments of
highly-efficient multi-CDN streaming solutions.

REFERENCES
[1] D. Wu, Y.T. Hou, W. Zhu, Y-Q. Zhang, and JM Peha, "Streaming video over the

internet: approaches and directions," IEEE Trans. CSVT, vol. 11, no. 3, pp. 282-300,
2001.

[2] B. Girod, M. Kalman, Y.J. Liang, and R. Zhang, "Advances in channel-adaptive video
streaming," Wireless Comm. and Mobile Comp., vol. 2, no. 6, pp. 573-584, 2002.

[3] G. J. Conklin, G. S. Greenbaum, K. O. Lillevold, A. F. Lippman, and Y. A. Reznik,
"Video coding for streaming media delivery on the internet," IEEE Trans. CSVT, vol.
11, no. 3, pp. 269-281, 2001.

[4] Bentaleb, B. Taani, A. C. Begen, C. Timmerer, R. Zimmermann, “A Survey on Bitrate
Adaptation Schemes for Streaming Media Over HTTP,” in IEEE Communications
Surveys & Tutorials, vol. 21, no. 1, 2019, pp. 562-585.

[5] Y. A. Reznik, K. O. Lillevold, A. Jagannath, and X. Li. 2021. Towards Understanding
of the Behaviour of Web Streaming. In 2021 Picture Coding Symposium (PCS). 1–5.

[6] Y. Reznik, X. Li, K.O. Lillevold, R. Peck, T. Shutt, and P. Howard, "Optimizing Mass-

Scale Multi-Screen Video Delivery," SMPTE Motion Imaging Journal, vol. 129, no. 3,
pp. 26-38, April 2020.

[7] R. Pantos, and W. May, "HTTP live streaming, RFC 8216,"
https://tools.ietf.org/html/rfc8216, 2017.

[8] ISO/IEC 23009-1:2022, "Information technology - Dynamic adaptive streaming over
HTTP (DASH) - Part 1: Media presentation description and segment formats,"
October 2022.

[9] Mind Commerce, "CDN Market by Technology, Platform, Application, Service Type,
Customer Type, and Industry Verticals 2021 – 2027", 2021.

[10] EBU TR 068, "CDN Architectures Demystified," EBU, Geneva, June 2022.
https://tech.ebu.ch/publications/tr068

[11] D. Hassoun, "How to Jump-Start Your Multi-CDN Strategy and Deliver Every Time",
Oct. 2019:
https://www.streamingmedia.com/Articles/ReadArticle.aspx?ArticleID=134765

[12] Muvi blog post: Multi-CDN switching methods: https://www.muvi.com/blogs/multi-cdn-
switching-in-streaming-businesses.html

[13] SVTA investigation of approaches to CDN delivery
https://www.svta.org/2023/01/03/investigating-approaches-to-multi-cdn-delivery

[14] HLS Content Steering Specification (v1.2b1)
https://developer.apple.com/streaming/HLSContentSteeringSpecification.pdf

[15] RFC 8216, Section 7: Content steering https://datatracker.ietf.org/doc/html/draft-
pantos-hls-rfc8216bis#section-7

[16] DASH-IF CTS Version 0.9.0 – https://dashif.org/docs/DASH-IF-CTS-00XX-Content-
Steering-Community-Review.pdf

[17] Content Steering at Edge, an open-source project: https://github.com/streaming-
video-technology-alliance/content_steering_at_edge (available to SVTA members)

[18] AVFoundation, https://developer.apple.com/av-foundation/
[19] Hls.js player, https://github.com/video-dev/hls.js/
[20] DASH.js player, https://github.com/Dash-Industry-Forum/DASH.js
[21] P. Cluff, "Survive CDN failures with redundant streams", September 2020,

https://www.mux.com/blog/survive-cdn-failures-with-redundant-streams
[22] 3GPP MEC, https://www.3gpp.org/news-events/partner-news/mec
[23] 5G-EMERGE project, https://www.5g-emerge.com/
[24] Video.js player, https://videojs.com/
[25] Brightcove VideoCloud system, https://videocloud.brightcove.com
[26] Blender Foundation, Big Buck Bunny video sequence, https://peach.blender.org/
[27] Brightcove Context Aware Encoding, https://www.brightcove.com/en/products/online-

video-platform/context-aware-encoding/
[28] Charles proxy, https://www.charlesproxy.com/documentation/proxying/throttling/

