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ABSTRACT 
Content Steering is a recent addition to both HLS and MPEG DASH 
standards, enabling dynamic routing of streaming content between different 
CDNs and delivery pathways. Already supported by DASH.js, HLS.js, and 
several other players, it dramatically simplifies the design of multi-CDN 
systems. No custom client plugins, DNS redirects, or CMS integrations are 
needed. However, for HLS/DASH Content Steering method to operate, it 
requires new elements: content steering servers. This paper discusses how 
to design and deploy them at scale. The proposed solution effectively 
reduces the logic on the content steering servers to stateless operations, in 
which all state variables become parameters of the client-server exchange. 
Such design enables servers to be deployed very inexpensively at the edge 
(by utilizing edge functions offered by many CDNs or edge platforms). Our 
proposed method is highly scalable, allows short response time, and 
enables a full spectrum of multi-CDN traffic optimizations: load balancing, 
failover protection, COGS- and QOE/QOS-based optimizations.  

1. INTRODUCTION 
Since its invention in the mid-1990s, Internet streaming has evolved from a pioneering 
concept to a mainstream technology used to deliver videos to viewers today [1-6]. This 
technology is exceptionally versatile. It reaches all IP-connected video devices of different 
screen sizes, mobility factors, and connection types (TVs, mobiles, PCs, etc.).  
The two most widely deployed variants of streaming protocols today are called HTTP Live 
Streaming (HLS) [7] and Dynamic Adaptive Streaming over HTTP (DASH) [8]. Both are 
international standards. Both use HTTP as the underlying network protocol and employ 
Content Delivery Networks (CDNs) for media delivery [9,10]. The underlying principle is 
simple: the encoded media content is placed on the origin server first, and then CDN 
propagates, locally caches, and delivers it to a geographically dispersed population of 
viewers. Effectively the CDN manages the scale of the delivery.  
However, CDNs have some limits. Some may not be available in all relevant regions; some 
may have internal capacity limits, and some may not have sufficient caches to support the 
delivery of vast collections of videos to the intended audience. CDNs may sometimes also 
experience outages or other technical failures, making them inaccessible for some time.  
Considering such limits, large streaming operators increasingly employ multiple CDNs and 
so-called "CDN switching" technologies to adjust delivery paths content dynamically for 
streaming [10-12]. Among existing solutions are technologies using DNS-based switching, 
dynamic manifest updates, player-based switching, custom CMS integrations, etc. However, 



           
most existing CDN switching solutions are complex and expensive to deploy and operate 
[9-13]. They also come with various drawbacks. Very few, for example, enable seamless in-
stream switching without interrupting the continuity of the playback. And they are all 
proprietary, requiring much custom code to be written and supported for each deployment.  
HLS / DASH Content Steering is a new standards-based technology [14-16] that promises 
to dramatically simplify the design of multi-CDN streaming systems.  
In this paper, we first briefly overview the Content Steering technology, explain how it works, 
and explain its benefits for practical applications. We will then discuss a few challenges 
arising in this technology's design and deployment at scale. We will show that such 
challenges are all addressable by design turning HLS/DASH content steering servers into 
stateless functions deployable by advanced CDNs or edge platforms. Such a method is 
highly scalable, allows short response time, and enables a full spectrum of multi-CDN traffic 
optimizations: load balancing, failover protection, COGS- and QOE/QOS-based 
optimizations. The proposed design forms the basis of an open-source content steering 
system implementation, currently under development and validation study by the Streaming 
Video Technology Alliance (SVTA) [13,17]. We will explain the capabilities of this system, 
the set of streaming clients and CDN integrations it already supports, and the utilities it brings 
to the operators of streaming systems.  

HLS / DASH CONTENT STEERING 
HLS / DASH Content Steering is a relatively recent development. First, in April 2021, Apple 
proposed a technology called "HLS Content Steering Specification" [14]. Subsequently, in 
July 2022, a similar technology proposal, titled "Content Steering for DASH," was entered 
for community review by DASH-IF [16]. The DASH-IF proposal was effectively a subset of 
HLS content steering, preserving the syntax of the client-server exchanges. The 
corresponding changes in HLS and DASH standards have been implemented over the last 
two years [8,15]. As of today, Content Steering is already supported by the AVplayer 
framework [18], as well as HLS.js [19] and DASH.js [20] streaming players. Reference 
streams and related open-source tools are also available for the developer community 
through the efforts of DASH-IF, CTA WAVE, and SVTA forums [13,17].   
To illustrate how the Content Steering mechanism works, in Figure 1, we depict an example 
streaming delivery system practicing it. This system employs two media CDNs, denoted 

 
Figure 1 – DASH delivery system with two media CDNs and content steering servers 

managing switching between them. 
 



           
CDN1 and CDN2, respectively. The URLs (or base URLs) of such CDNs, also called 
"pathways," have assigned names. In our system, we use names "alpha" and "beta" to refer 
to CDN 1 and 2, respectively. Both CDNs can deliver data, but only one is active at each 
moment in time. The system also deploys a server-side control element - the Content 
Steering server. We show relevant manifest declarations and exchanges between players 
and the steering servers in callouts.  
As shown in Figure 1, the manifest defines the locations of CDNs and a steering server for 
use during a streaming session. In DASH, the corresponding syntax includes redundant 
BaseURL declarations and a ContentSteering descriptor: 

<BaseURL serviceLocation="alpha">https://cdn1.com/</BaseURL> 
<BaseURL serviceLocation="beta">https://cdn2.com/</BaseURL> 
<ContentSteering defaultServiceLocation=“beta" 
queryBeforeStart="true">https://steeringserver.com> 
</ContentSteering> 

In HLS, the corresponding syntax includes using redundant variant streams pointing to 
different CDNs, with PATHWAY-ID annotations and a pointer to the steering server provided 
by the #EXT-X-CONTENT-STEERING tag: 

#EXTM3U  
#EXT-X-CONTENT-STEERING:SERVER-URI="https://steeringserver.com",PATHWAY-ID="beta"  
#EXT-X-STREAM-INF:BANDWIDTH=1280000,PATHWAY-ID="alpha" 
https://cdn1.com/hi/video.m3u8 
#EXT-X-STREAM-INF:BANDWIDTH=1280000,PATHWAY-ID="beta" 
https://cdn2.com/hi/video.m3u8 

If an HLS manifest includes several variant streams per encoding ladder, the proper practice 
is to make all such variant streams available on both CDNs.  

In principle, redundant variant streams and BaseURL declarations already existed in earlier 
HLS and DASH standards versions. Most existing clients already recognize them and use 
them to implement a basic failover logic for cases of significant network errors [21]. However, 
the ContentSteering elements are new, providing specific instructions to the clients about 
which CNDs to use. 
When receiving a manifest with content steering elements present, the new HLS / DASH 
streaming players recognize the existence of steering servers and call them during the 
session. They issue HTTP GET requests to the steering server URI specified in the manifest. 
As part of the request, they may include various additional parameters. The parameters 
specified as recommended by both DASH and HLS specifications, are listed in Table 1.  

 
An example of a client's request communicating such parameters to the steering server is 
provided below: 

GET "https://steeringserver.com?session=abc&_DASH_pathway=beta&_DASH_throughput=145000" 

Table 1 – Parameters communicated by HSL/DASH clients to steering servers. 
HLS parameter  DASH parameter  Description 
_HLS_pathway_ _DASH_pathway_ ID of the last pathway used by the client 

_HLS_throughput_ _DASH_throughput_ Estimated throughput [bits / sec], as observer by 
the client in pulling data from the selected CDN 

 

https://cdn1.com/
https://cdn2.com/
https://steeringserver.com/
https://steeringserver.com/
https://cdn1.com/hi/video.m3u8
https://cdn2.com/hi/video.m3u8
https://steeringserver.com/?params=abc
https://steeringserver.com/?params=abc


           
In this example, the client also passes the session ID as a custom parameter in addition to 
the pathway and throughput parameters.  
In response to receiving such a request, the content streaming server generates a response 
indicating the preferred order of the CDNs (or pathways), the time to call the steering server 
again (TTL), and the SERVER-URI to use when calling the server next time.  
Below, we provide an example of a response that the server can generate: 

{ 
 "VERSION": 1, 
 "TTL": 300, 
 "RELOAD-URI": "https://steeringserver.com?session=abc" 
 "SERVICE-LOCATION-PRIORITY": ["beta", "alpha"] 
} 

In this example, the server instructs the client to use pathway "beta" with a higher priority for 
streaming and then to call the server back in 300 seconds for the next update. The 300 
seconds (5 minutes) TTL is a default response interval recommended by HLS specifications. 

Once the client receives the steering server response, it checks if the top CDN specified 
matches the one currently used, and if not, it implements the switch.  

The above-described syntax of the steering server response and client-server interactions 
are the same for HLS and DASH systems, enabling the same server to handle content 
steering operations. 

IMPLEMENTING HLS / DASH CONTENT STEERING SYSTEM 
Next, we study the implementation aspects of a multi-CDN streaming system employing the 
HLS / DASH Content Steering mechanism. 
Centralized Steering Server-based Design 
Figure 2 shows a possible implementation of the HLS/DASH content steering system. In this 
design, a single is responsible for all steering decisions. Conceptually, this is the most 
straightforward implementation of the system.  
The objective of the steering server is to direct traffic to each CDN in a way that achieves 
some beneficial effect. For example, it may perform failover control, increasing the system's 

 
Figure 2 – Centralized server-based implementation of content steering system. 

 

https://steeringserver.com/?session=abc


           
reliability. Or it may perform CDN load balancing, enabling broader distribution. It may also 
perform QOE/QOS- or COGS-type optimizations.  

The steering server may receive at least two types of input information. First, to perform 
QOE or QOS-based optimizations, it will need to get QOE or QOS data about the system's 
performance. The usual source of such information is the analytics engine, collecting data 
from the streaming players, origin servers, and CDNs.  
The other input that the steering server may receive is a set of business rules associated 
with each CDNs. Such data, for example, may include contract lengths, traffic- or dollar-level 
commits, per-GB edge traffic rates, etc.  
Based on all such inputs, the content steering server decides how to direct traffic to achieve 
the desired utility (e.g., failover, load distribution, QOE/QOS-, or COGS-based optimization). 
We note that such decisions must be made periodically, as each client associated with each 
active session will call the server back at the TTL interval.  

Limitations of the Centralized Server-based Design 
We next will note some limitations of a system depicted in Figure 2.   
The first one is scalability. Let us assume, for example, that we have an event watched by 
6M of concurrent viewers. Then with 300 seconds TTL, the steering server will need to 
process at least 20K requests per second. That is a pretty high number! With conventional 
hardware and some non-trivial logic required for deriving each steering response, it may 
easily overload a single server or a cluster of servers. In other words, the architecture can't 
be that simple. It will likely need many servers and appropriate autoscaling and load-
balancing logic.  
The other issue is the operating cost. With the cloud-based implementation, processing each 
steering response involves compute-time and bandwidth-based costs. Such expenses can 
be considerable. At least as high as the costs of operating manifest origins, manifest CDNs, 
and maybe more.  
The related issue is the response delay of the system. Reducing steering server TTL, as we 
just noted, goes against the scalability and costs of the system. Hence it will have to be 
relatively long, for example, 300 seconds or even longer.  
However, such a long TTL dramatically reduces the utility and effectiveness of content 
steering! While 300 seconds (5 minutes) may be adequate for essential load balancing and 
CDN commit management tasks, it is inadequate for other objectives, such as QOS/QOE 
optimizations or rapid enough failover logic. When clients start buffering, directing them to 
another CDN 5 minutes later is too late! 
In other words, we observe that the centralized server implementation of the HLS / DASH 
content steering method comes with many fundamental limits.  

DISTRIBUTED, EDGE-BASED IMPLEMENTATION OF CONTENT STEERING 
We next present an alternative implementation of the steering system addressing the above-
described limits. Figure 3 shows the overall diagram of our proposed design.  
First, instead of using a single content steering server responsible for all decisions in the 
system, the proposed design splits steering operations into two stages: 



           

● The first stage. Defines the initial preferred CDN order for each new streaming 
session and assigns steering servers to such sessions. We call the server (or a 
cluster of servers) producing such initial decisions – the steering master.  

● The second stage. This stage produces all subsequent CDN steering decisions for 
each streaming session at TTL intervals. We use stateless functions and edge 
computing platforms to implement all such operations.   

The proposed two-stage implementation has several key benefits: 
- It becomes massively scalable - as scalable as CDNs / platforms responsible for 

executing edge functions;  
- it also becomes much more economical to deploy - as bandwidth and per/requests 

costs at CDNs or edge platforms are significantly less expensive than egress traffic 
costs of cloud platforms 

- it also becomes more responsive, allowing lower TTL response times between 
clients and the servers.  

Reducing response time is crucial for enabling many additional utilities of the system. Thus, 
when TTL becomes shorter than the size of the player's buffer (e.g., 10-30 seconds), this 
automatically enables QOS and QOE-type optimizations — for example, prevention of 
buffering or allowing clients to use higher quality streams. Shorter response times are critical 
for graceful failover behavior, disaster recovery, and many other applications.  

Regarding possible deployment options, the platforms currently supporting edge processing 
include AWS / CloudFront with Lambda @ Edge, Fastly's VCL, Akamai Edge Workers, 
CloudFront Functions, and others [9]. With the rollouts of 3GPP MEC-based services [23] 
and hybrid ecosystems such as 5G-EMERGE [24], the range of deployment options for such 
architecture will likely be even broader.  
However, in all cases, for a steering server to be deployable at the edge, it must be reduced 
to a simple stateless function. We discuss this design aspect next.  
 

 
Figure 3 – Edge-based implementation of the content steering system. 

 



           

Stateless Implementation of Content Steering Servers 
The critical element that enables us to turn the steering server into a stateless function is 
the parameter string used for communication between the streaming client and the server. 
This string can be specified as part of the SERVER-URI element in the manifest and as part 
of RELOAD-URI in the steering server response.  
Hence, by encoding an internal state and passing it as a parameter string to the client, the 
server can recover it the next time the client calls it. Such a method allows the server to 
retain the full context of the session while being invoked as a stateless function on each 
client's request. We explain the dynamic of such client-server exchanges in Figure 4.  
To pass an edge server an initial state, we encode such a state as part of the SERVER-URI 
string in the manifest. The manifest updater module depicted in Figure 3 does this for each 
new session.  
In our current implementation, the edge server state variables include a few key 
characteristics of the encoding profile (minimum and maximum bitrates used by its 
renditions, media duration), current position in the stream, currently observed throughput 
statistics of all CDNs (as specific to player's region), and the CDN priority list as defined by 
the steering master. Such state variables allow our edge servers to perform in-session QOE-
type delivery optimizations while adhering, to the extent possible, to CDN priorities as set by 
the steering master.  
In our current implementation, we have also added a mechanism allowing CDN order 
decisions to be forced centrally for all edge servers in a particular region or working with 
some specific CDNs. Such a mechanism is necessary for testing, manual interventions, 
disaster recovery efforts, etc.  

Distributed Decision Logic 
We next discuss the distribution of the decision logic across players, edge servers, and the 
steering master server in our system. Figure 5 provides a diagram explaining this split.  
First, we notice that streaming clients do all final switches. They follow the standards. They 
recognize the presence of all CDNs/pathways as declared in the manifests and the order of 
CDNs as provided by the content steering servers. They usually choose the top-priority listed 
CDN/pathway for delivery. However, in some cases, the clients may also select an 

 
Figure 4 – Exchanges between clients and steering servers carrying the session-related 

state in the parameter string. 



           

alternative CDN by picking the next one on the priority list. Usually, this happens in cases of 
significant network failures or lack of responses from the default CDN [21]. Effectively, the 
clients perform failover control logic. 
However, each client only observes statistics for the CDN currently in use. It generally does 
not know what happens simultaneously with other CDNs in the system. Such knowledge is 
essential for QOS/QOE-type of optimizations. For these reasons, our system uses edge 
steering servers for in-session level QOE optimizations. As explained earlier, they receive 
performance statistics for all CDNs in the player's region as part of their initial state. Then 
they progressively update these statistics based on throughput values reported by the 
clients. With short enough TTL times, this becomes sufficient to detect degradation in the 
performance of the current CDN and force switch preventing buffering.  
The master steering server in our proposed system architecture is responsible for all 
regional- or global-level optimizations. These include CDN load-balancing, COGS-based 
optimizations, CDN contracts commit-level control, etc. Such decisions don't usually require 
short TTLs, and the per-session granularity of CDN assignments is generally adequate. The 
regional- or global-level failover actions may also be started at the master server and 
propagated to edge servers.  
With the described distribution of functions, the proposed system architecture can deliver 
multiple utilities in multi-CDN traffic management while being highly scalable, responsive, 
and simple to deploy and operate.  

OPEN-SOURCE PROJECT IN SVTA 
The essential elements of the described system – manifest updaters, steering servers, and 
testing and deployment scripts are now available as an open-source project within 
Streaming Video Technology Alliance (SVTA) [17]. Figure 6 shows the landing page of this 
project in SVTA GitHub.   

 
Figure 5 – Distribution of functions in a system with player-, edge-steering servers, and 

master server levels of control. 
 



           

This implementation supports HLS and DASH protocols and allows several deployment 
options. It includes steering servers implemented as standalone servers and edge functions 
deployable by AWS Lambda @ Edge. The manifest updaters allow deployments as 
standalone servers or as AWS Lambdas. The system works with DASH.js [20] and 
HLS.js [19] streaming players. The support for Video.js [24] and several related commercial 
streaming players [25] is currently being added.  
Among functions immediately supported by this open-source project are: 

- QOE/QOS optimizations (prevention of buffering) 
- Automatic failover functions (switches in cases of failures of either CDNs) 
- Manual steering controls (forced changes of CDN priority orders). 

All these functions are available from a project demo page, as shown in Figure 7.  
When operating this demo, the user can specify the protocol (DASH or HLS), sample content 
encoded using this protocol, and the streaming player. For testing the effectiveness of 
QOS/QOE and failover functions of the system, the user activates a network proxy 
/bandwidth throttling tool. By setting different network conditions for each CDN / pathway, 
the user can observe the effects of failover prevention of the QOE optimization functions of 
this system.  
The immediate objective of this project is to provide a reference implementation of the 
HLS/DASH Content-Steering-based system and use it for performance study, along with 
other CDN solutions currently under investigation by the SVTA alliance [13]. Once fully 
validated and tested, this project promises to become a reference that would simplify 
subsequent developments and deployments of highly-scalable practical multi-CDN 
streaming solutions based on HLS / DASH content steering.  

 
Figure 6 – Content Steering at Edge project page in SVTA GitHub.  



           

 
EXPERIMENTAL STUDY 
This section reports preliminary experimental results using the SVTA open-source content 
steering framework.  
For testing, we used the well-known "Big Buck Bunny" video sequence [26]. We have 
encoded it for HLS and DASH streaming using Brightcove CAE encoder [27]. The resulting 
ladder included four streams with parameters listed in Table 1. We used 2-second segments 
and an identical file format (CMAF) for both HLS and DASH versions of the streams.  

Table 1 – Characteristics of encoded video streams used in our test experiment 

Rendition Video codec Bitrate [bps] Resolution Framerate 

1 H.264/AVC 4530860 1920x1080 30 

2 H.264/AVC 2445034 1280x720 30 

3 H.264/AVC 1419255 1024x576 30 

4 H.264/AVC 783322 640x360 30 

We subsequently placed all streams on two HTTP servers and with extra instrumentation 
added to control their respective output bandwidth/throughputs. We called the URLs leading 

 
Figure 7 – Test/demo page of edge-based content steering system. 

 



           
to these servers "CDN-A "and "CDN-B," respectively. Figure 8 shows the pattern shape 
used to modulate the bandwidth along each pathway during streaming sessions.  

 

Figure 8 – Test pattern used to limit client-side throughput of CDNs/pathways 
used for delivery. 

As easily observed, the test pattern is straightforward, with CDN A being worse than CDN 
B, particularly at the beginning. It also effectively tests the range of bitrates as present in the 
encoding ladder (Table 1). If a player stays with CDN A longer, it will likely switch and buffer 
more throughout the session. Each session is about 10 minutes long (the length of the "Big 
Buc Bunny" sequence).   

To measure system performance, we have instrumented streaming clients to report 
standard performance metrics, such as streaming startup time, the number of buffering 
events, the number of seconds spent buffering, current rendition bitrate, etc. The startup 
time reflects the difference between "loadstart" and "loadeddata" events in HTML5. The rest 
of the metrics are reported natively by clients (HLS.js and DASH.js, respectively).  

For testing, we have considered the following possible systems/scenarios: 
1) DASH playback without content steering, 
2) DASH playback with SVTA edge content steering, 
3) HLS playback without content steering 
4) HLS playback with SVTA edge content steering. 

In all cases, CDN-A served as a default (higher priority) pathway at the beginning of the test 
session. We used the SVTA edge steering server to control subsequent CDN priorities 
dynamically. In all cases, we repeated each session/experiment 10 times. Table 2 shows 
the resulting average statistics. 
  



           
Table 2 – Performance metrics and test results collected.  

System under test Startup 
time [ms] 

Buffering 
events 

Buffering 
seconds 

Average 
bitrate 

Rendition 
switches 

DASH, no steering 1231 35 80.1 783.8 2 

DASH, with content steering 1216 2 21.1 4327.1 1 

HLS, no streering 1579 8 30.6 2371.3 2 

HLS, with content steering 1834 1 11.5 4497.1 1 

While these results are preliminary and limited to a few artificial cases, we find them highly 
encouraging. We see that steering brings significant improvements in reducing the number 
of buffering events and number of seconds spent buffering. We also see a significant (2-4x) 
increase in the average bitrate delivered to the viewers. And interestingly enough, the 
number of rendition switches is also lower due to intelligent choices of CDNs.  

All these factors indicate that content steering has excellent potential for delivering improved 
QOE, reliability, and effectiveness of multi-CDN delivery systems.  

CONCLUSIONS 
This paper reviewed the Content Steering technology recently introduced in both HLS and 
DASH standards. We have discussed the advantages of this technology, and we have also 
identified some challenges with its realization and deployment at scale. To address these 
challenges, we have proposed a distributed deployment model utilizing edge processing 
functions of modern CDNs and edge platforms. We have shown that this model is highly 
scalable, allows short response time, and enables a full spectrum of multi-CDN management 
functions: load balancing, failover protection, and COGS- and QOE/QOS-based 
optimizations. The proposed system has been implemented and contributed to an open-
source project within Streaming Video Technology Alliance. With additional refinements, 
testing, and validations performed now as a community effort, we believe it could provide a 
helpful reference enabling the industry to accelerate developments and deployments of 
highly-efficient multi-CDN streaming solutions.  
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