
On Time-Space Efficiency of Digital Trees with Adaptive

Multi-Digit Branching∗

Yuriy A. Reznik
RealNetworks, Inc.

2601 Elliott Avenue, Seattle, WA
yreznik@ieee.org

March 27, 2003

Abstract

We consider a class of digital trees (tries) with adaptive selection of degrees of their nodes.
This class includes LC-tries of Andersson and Nilsson (1993) which recursively replace all com-
plete subtrees in the original tries with larger (multi-digit) nodes, as well as dynamic tries of
Nilsson and Tikkanen (1998) which recursively replace all subtrees of bounded sparseness (a
ratio of the number of missing nodes at the last level to the total number of nodes at this level).

In this paper we study the average behavior of such tries with respect to a hybrid time/space
efficiency criterion. We demonstrate that there exists an interesting connection between the
efficiency and sparseness of nodes in adaptive tries. In particular, we show that in a symmetric
memoryless model, the optimal in a sense of time/space efficiency nodes, are 1/e-times (≈ 36.8%)
sparse. On the other hand, if the source is asymmetric, the sparseness of the time/space efficient
nodes is somewhat larger, asymptotically (with large number of strings) approaching 50%.

These results can be used to support the trie construction algorithm of Nilsson and Tikkanen,
and suggest the optimal choice of constants in this procedure.

1 Introduction

Digital trees (also known as radix search trees, or tries) represent a convenient way of organizing
alphanumeric sequences (strings) of variable lengths that facilitates their fast retrieving, searching,
and sorting [14, 19, 26]. If we designate a set of n distinct strings as S = {s1, . . . , sn}, and assume
that each string is a sequence of symbols from a finite alphabet Σ = {α1, . . . , αm}, then a trie T (S)
over S can be constructed recursively as follows. If n = 0, the trie is empty . If n = 1 (i.e. S
has only one string), the trie is an external node containing a pointer to this single string in S.
If n > 1, the trie is an internal node containing v pointers to the child tries: T (S1) , . . . , T (Sm),
where each set Si (1 6 i 6 m) contains suffixes of all strings from S that begin with a corresponding
first symbol. For example, if a string s = uw (u is a first symbol, and w is a string containing
the remaining symbols of s), and u = αi, then the string w will go into Si. Thus, after all child
tries T (S1) , . . . , T (Sm) are recursively processed, we arrive at a tree-like data structure, where the
original strings S = {s1, . . . , sn} can be uniquely identified by the paths from the root node to
non-empty external nodes (see Fig. 1.a).

It is well known, that the average time of a successful search in a trie is asymptotically 1
h log n+

O (1), where h is the entropy of a stochastic process used to produce n input strings (cf. [19, 7, 12, 16,
24, 18, 28, 17]). The average number of internal nodes in a trie is asymptotically log e

h n (1 + o (1))1.

∗Author’s translation from Russian original text, published in “Kibernetika i Sistemnyi Analiz” (Cybernetics and
Systems Analysis), Vol 39, No 1, 2003, pp 177-188. Original paper was submitted on June 18, 2002.

1The bases of logarithms in these formulas correspond to a unit of information (e.g. bits or nats) used to measure
the entropy of the source h

1

s1

s3 s4 s5

s6 s7

s8 s9

s2 (a) Binary trie

0 1

00 1101 10

000 001 011010

0000

(d) "Sparse" LC-trie
s1 s3

s4 s5

s6 s7 s8 s9

s2

000 111

00000

s1

s3 s4 s5 s6 s7

s8 s9

s2 (b) Multidigit trie (r=2)

00 11
01 10

0000 0011 01110100

000000

s1

s3 s4 s5

s6 s7

s8 s9

s2 (c) LC-trie

00 11
01 10

0000 0011

0000000000

0011

r=3

r=2

r=2

r=2 r=1

r=1

r=1

Figure 1: Examples of tries built from 9 binary strings: s1 = 000000 . . ., s2 = 000010 . . ., s3 =
00011 . . ., s4 = 0010 . . ., s5 = 0011 . . ., s6 = 0100 . . ., s7 = 0110 . . ., s8 = 101 . . ., s9 = 110

These estimates are known to be correct for a number of standard stochastic processes, such as
memoryless, Markovian, ψ-mixed models [24, 17, 29].

In an effort to reduce the search time several modifications of the original trie structure have
been proposed (cf. [27, 21, 5, 19]. For example, multi-digit tries (we use this term after [2]) accelerate
search by processing some fixed number r > 2 of symbols in each node (see Fig.1.b). Assuming that
branching is implemented using lookup tables, such tries should be approximately r-times faster than
regular tries. However, such an improvement comes at a cost of about mr/r-times more memory,
since r-digit nodes must have mr pointers, most of which are wasted if r is large [19].

This motivated the development of adaptive multi-digit tries (cf. [2, 22, 25]), in which the
parameter r (the number of digits to be processed) can be changed from one node to another.
The best known example of such a structure is a level-compressed trie (or LC- trie) of Andersson
and Nilsson [2], which recursively replaces all complete subtrees of the original (m-ary) trie with
multi-digit nodes (see Fig.1.c). It has been shown (cf. [23, 8, 3]), that in a memoryless model an
LC-trie creates nodes with r → (log n− log log n) /h−∞, where n is the number of strings processed
by a node, and h−∞ = − log (min {pi}), and pi (1 6 i 6 m) are the probabilities of symbols produced
by the source. When the memoryless source is symmetric (pi = 1/m), the expected search time in
an LC-trie is only ∼ log∗ n [2, 9], however, it becomes O (log log n)-large in the asymmetric case [3].

Even faster versions of adaptive tries can be constructed by allowing some additional sparse
levels (i.e. levels containing empty sub-tries) to be included in multi-digit nodes (see Fig.1.d). Such
a strategy is also desirable for dynamic construction of such tries (since empty positions can be
used to avoid frequent resizing of their nodes [22]). However, an overly aggressive usage of sparse
levels will also lead to an increased memory usage, which brings a problem of finding an optimal (in
time/space sense) strategy for construction of such tries.

An interesting experimental study on this subject has been recently published by Nilsson and
Tikkanen [22]. They proposed to construct dynamic multi-digit tries by imposing upper and lower
bounds on the sparseness (a ratio of the number of pointers to empty sub-tries to the total number of
pointers in a node) of their nodes. For example, if during an insertion of a new string, the sparseness
of a current node falls below a given lover bound, their algorithm increments parameter r for this
node (i.e. adds the top-most level from its child sub-tries). On the other hand, if at some point, the
sparseness of a current node became higher than a given upper bound, the algorithm decrements
parameter r for this node (i.e. removes the last level and merges its (single-digit) nodes with the

2

}} } }
n strings

r digits

a (r)n x (r)n e (r)n

000 111

Figure 2: Parameters of an r-digit node processing n strings.

remaining sub-tries). Nilsson and Tikkanen have concluded that constraining sparseness of nodes in
25% . . . 50% range provides a good compromise for various practical applications.

The paper of Nilsson and Tikkanen [22], however, left open the possibility (and emphasized the
need) for an analytic explanation of the relationship between the sparseness of nodes and the average
time/space performance of multi-digit tries. Finding such an explanation is the main goal of this
paper.

In this paper, we study several natural parameters of nodes in multi-digit tries, and argue, that
the effectiveness of an internal multi-digit node from a successful search-time perspective is reflected
by the number of pointers to external nodes immediately following this node (i.e. by the number
of strings separated (uniquely identified) by this node). On the other hand, the usage of space is
reflected by the total number of pointers in the node (e.g. mr for a node combining r levels in m-ary
alphabet). Hence, an appropriate hybrid time/space efficiency metric is provided by a ratio of the
number of pointers to external nodes to the total number of pointers the a node.

We analyze the average behavior of both sparseness and time/space efficiency of multi-digit
nodes in a memoryless model, and derive their asymptotic expressions when the number of strings
n passing through such nodes is large.

Using these expressions we show that the optimal in a sense of time/space efficiency nodes are
actually 1/e-times (≈ 36.8%) sparse when the source is symmetric. When the source is asymmet-
ric, the sparseness of the time/space efficient nodes is somewhat larger, asymptotically (with large
number of strings) approaching 50%.

Even more importantly, we discover, that in a symmetric model, it is possible to construct tries
with a constant (O(1)) average time/space efficiency of nodes. This suggests, that symmetric 1/e-
sparse tries should be O(1)-fast and O(n)-large at the same time. In the asymmetric case, however,
the average time/space efficiency of nodes is asymptotically decreasing as O

(
1√

log n

)
, making them

somewhat less appealing compared to the N-trees and recursive hashing schemes (cf.[10, 11, 30, 20]).
This paper is organized as follows. In the next section, we give formal definitions and present our

main results. All proofs are delayed until Section 3, which is also used to provide a brief description
of the required tools of the asymptotic analysis.

2 Definitions and Main Results

Consider an r-digit node processing n binary strings depicted in Fig.2. We have the following
parameters:

an(r) the number of pointers to internal nodes attached to this node;

xn(r) the number of pointers to external nodes (strings);

en(r) the number of empty pointers (i.e. pointers to empty child tries).

Observe that the total number of pointers in such a node is

an(r) + xn(r) + en(r) = 2r. (1)

3

We now can introduce two derivative parameters, reflecting the effectiveness of such a node in
both time- and space- domains.

Definition 1. A sparseness of an r-digit node processing n strings εn(r) is a ratio of the number
of pointers to empty nodes to the total number of pointers in this node:

εn(r) =
en(r)
2r

. (2)

Definition 2. A time/space efficiency of an r-digit node processing n strings ηn(r) is a ratio of the
number pointers to the external nodes (i.e. the number of strings uniquely identified by this node)
to the total number of pointers in this node:

ηn(r) =
xn(r)

2r
. (3)

Remark 1. The actual meaning of the second parameter ηn(r) deserves some additional expla-
nation. Observe, that ηn(r) = 1 implies that xn(r) = n = 2r, which means that n strings form a
complete r = log2 n-level trie, which is fully covered by a single multi-digit node. A value ηn(r) = 1/2
corresponds to a number of possible situations, such as, for example, when a node with r = log2 n
levels contains only xn(r) = n/2 external nodes, or when a node that successfully parses all n strings
(xn(r) = n) has twice many pointers: 2r = 2n, and so on. Lower values of ηn(r) reflect even worse
ability of nodes to parse strings at a rate comparable with the growth of their size.

Remark 2. It can be shown (using the ratio inequality [15]) that the efficiencies of individual nodes
have the following simple connection with the parameters of the entire trie:

n

Sn
=

∑
j xnj (rj)∑

j 2rj
6 max

j

{
xnj (rj)

2rj

}
= max

j

{
ηnj (rj)

}
, (4)

where j is used to scan all internal nodes, and Sn is the total number of pointers in a trie constructed
from n strings. The equality in 4 is attained when all nodes in a trie have the same efficiencies.

Remark 3. It shall be stressed that a formula (3) for the parameter ηn(r) cannot be immediately
used for guiding the dynamic construction of tries. For example, we know that all nodes without
immediately attached external nodes have ηn(r) = 0, so that a node with at least one external node,
regardless of its size will be considered as a better choice. In practice, this will lead to extreme
variation of sizes of nodes created by maximizing their ηn(r). This observation, however, does not
affect the usefulness of this metric in studying the average behavior of tries. In fact, what we will
show, is that the expected behavior of ηn(r)-optimal nodes is indeed, quite reasonable, and that it
can be successfully simulated by imposing the appropriate constrains on the sparseness of nodes.

In order to study the average behavior of tries we will assume that our input strings S are
generated by a binary memoryless (or Bernoulli) source [6]. In this model, symbols of the alphabet
Σ = {0, 1} occur independently of one another, so that if xj is the j-th symbol produced by this
source, then for any j: Pr {xj = 0} = p, and Pr {xj = 1} = q = 1− p. If p = q = 0.5, such source is
called symmetric, otherwise it is asymmetric (or biased).

Now, we can define the quantities of our main interest:

η̄n(r) := E {ηn(r)} =
E {xn(r)}

2r
, (5)

ε̄n(r) := E {εn(r)} =
E {en(r)}

2r
, (6)

where the expectations are taken over all possible tries over n strings when parameters of the
memoryless source (p and q) are fixed.

We first present our result regarding the expected efficiency of nodes.

4

Theorem 1. The expected efficiency η̄n(r) of an r-digit node processing n binary strings from a
memoryless source satisfies:

η̄n(r) = n2−r
r∑

s=0

(
r

s

)
psqr−s

(
1− psqr−s

)n−1
. (7)

If p 6= q and

r =
log n

hε
+ xσε

√
log n, (8)

where

hε = −1
2

log p− 1
2

log q, (9)

h(2)
ε =

1
2

log2 p +
1
2

log2 q, (10)

σ2
ε =

h
(2)
ε − h2

ε

h3
ε

, (11)

and x = O(1), then, asymptotically, with n →∞:

η̄n(r) =
1√

2πσεhε

√
log n

e−
x2
2 + O

(
1

log n

)
. (12)

Observe, that the asymptotic expression (12) has a clear point of maximum when x = 0. Hence,
based on the precision of our original approximation (8), we can conclude that an r-digit node has
a maximum average efficiency when r = r∗, where

r∗ =
log n

hε
+ o

(√
log n

)
. (13)

This statement holds in both symmetric and asymmetric cases (in the symmetric case, we simply
notice that η̄n(r) ∼ n 2−re−n 2−r

, where maximum is attained when n 2−r = 1).
We now turn our attention the expected sparseness of multi-digit nodes. We discover the follow-

ing.

Theorem 2. The expected sparseness ε̄n(r) of an r-digit node processing n binary strings from a
memoryless source satisfies:

ε̄n(r) = 2−r
r∑

s=0

(
r

s

) (
1− psqr−s

)n
. (14)

If p 6= q and

r =
log n

hε
+ xσε

√
log n, (15)

where x = O(1), and hε, σε are as defined in (9-11), then, asymptotically, with n →∞:

ε̄n(r) = Φ
(

x− x2 σεhε

2
√

log n

)
− γ

1√
2πσεhε

√
log n

e−
x2
2 + O

(
1

log n

)
, (16)

where

Φ (x) =
1√
2π

x∫

−∞
e−

t2
2 dt, (17)

is the distribution function of the standard normal distribution [1], and γ = 0.5772 . . . is the Euler
constant.

5

0

0.2

0.4

0.6

0.8

1

2 4 6 8 10 12 14 16r

1/2

1/e

η̄n(r)

ε̄n(r)

p = 1/16

p = 1/2

Figure 3: Plots of two parameters η̄n(r) and ε̄n(r) of nodes under memoryless sources with proba-
bilities: p = 1/2 (solid line), p = 1/4, p = 1/8, and p = 1/16 (dotted lines, lowering the p moves
centers of both η̄n(r) and ε̄n(r) to the left). Horizontal lines correspond to levels 1/2 and 1/e. Plots
are rendered for n = 512.

From the above asymptotic expression (16) it should be clear that when a node reaches a point
r = r∗ (13) of its the maximum average efficiency, its sparseness is asymptotically:

ε̄n(r∗) ∼ 1
2
− γ

1√
2πσεhε

√
log n

,

and approaching 1/2 when n is sufficiently large.
When the source is symmetric, formula (14) becomes ε̄n(r) = (1− 2−r)n, and it is clear that for

large n: ε̄n(r∗) → 1/e.
In Fig.3 we plot the results of numerical calculations using exact expressions (7, 16) for both

functions η̄n(r) and ε̄n(r) under and several types of memoryless sources (p = 1/2...1/16). Here, is
can be seen that the maximum points of η̄n(r) are very close (within γ) to the corresponding median
points of ε̄n(r), thus confirming findings of our asymptotic analysis.

3 Analysis

Consider an r-digit node processing n binary strings. By ak
n(r) we denote the number of its child

nodes containing exactly k strings from the original set of n. Our previously introduced quantities,
such as the number of pointers to external nodes xn(r) and the number of empty pointers xn(r) are,
indeed, just special cases of ak

n(r):

en(r) = a0
n(r), (18)

xn(r) = a1
n(r). (19)

The next lemma provides an exact formula for the average value of ak
n(r) in a memoryless model.

Lemma 1. The quantity āk
n(r) := E

{
ak

n(r)
}

in a memoryless model satisfies:

āk
n(r) =

(
n

k

) r∑
s=0

(
r

s

) (
psqr−s

)k (
1− psqr−s

)n−k
. (20)

6

Proof. Consider an r-digit node processing n strings. Assuming that each of its 2r branches have
probabilities p1, . . . , p2r , and using the standard technique for enumeration of nodes in tries [19,
6.3-3], we can write:

āk
n =

∑

l1+...+l2r =n

(
n

l1 . . . l2r

)
p1 . . . p2r (δkl1 + . . . + δkl2r) ,

=
n∑

l=0

(
n

l

) (
pl
1 (1− p1)

n−l + . . . + pl
2r (1− p2r)n−l

)
δkl,

=
(

n

k

) (
pk
1 (1− p1)

n−k + . . . + pk
2r (1− p2r)n−k

)
, (21)

where δij is a Kronecker delta. Recall now, that we are actually working with an r-digit node, so
given the probabilities of each digit (p and q = 1 − p for symbols 0 and 1 correspondingly) we can
write:

pi = psiqr−si , (22)

where si is the number of occurrences of symbol 0 in a string leading to a branch i (1 6 i 6 2r).
Combining (21) and (22), we arrive at the expression (20) claimed by the lemma.

Using this result and our definitions of the average efficiency (5) and the average sparseness (6)
of r-digit nodes we arrive at:

η̄n(r) =
ā1

n

2r
= n 2−r

r∑
s=0

(
r

s

)
psqr−s

(
1− psqr−s

)n−1
,

ε̄n(r) =
ā0

n

2r
= 2−r

r∑
s=0

(
r

s

) (
1− psqr−s

)n
,

which proves the first pair of expressions (7) and (14) in our Theorems.
In order to study asymptotic behavior of these formulas for large n, we first convert them into

alternating sums:

η̄n(r) = n 2−r
n−1∑

k=0

(
n− 1

k

)
(−1)k

(
pk+1 + qk+1

)r

= −2−r
n∑

k=0

(
n

k

)
k(−1)k

(
pk + qk

)r
, (23)

ε̄n(r) = 2−r
n∑

k=0

(
n

k

)
(−1)k

(
pk + qk

)r
, (24)

and apply Rice’s integral method (cf. Knuth [19, Ex.5.2.2-54], Flajolet and Sedgewick [12, 13]).
We quote the following formulation of this method from [29].

Lemma 2 (S.O.Rice). Let f(z) be of polynomial growth at infinity, and analytical left to the
vertical line

(
1
2 −m− i∞ , 1

2 −m + i∞)
. Then:

n∑

k=m

(
n

k

)
(−1)kf(k)

=
1

2πi

∫ 1
2−m+i∞

1
2−m−i∞

f(−z)B(n + 1, z)dz (25)

=
1

2πi

∫ 1
2−m+i∞

1
2−m−i∞

f(−z)n−zΓ(z)
(

1 + O

(
1
n

))
dz,

where B(x, y) = Γ(x)Γ(y)/Γ(x + y) is the beta-function.

7

(a)

–1
–0.5

0
0.5

1

Re(z)

–2
–1

0
1

2

Im(z)

0

1

2

3

4

(b)

–1
–0.5

0
0.5

1

Re(z)

–2
–1

0
1

2

Im(z)

0

1

2

3

4

(c)

–1
–0.5

0
0.5

1

Re(z)

–2
–1

0
1

2

Im(z)

0

1

2

3

4

Figure 4: Plots of the following expressions: (a) fn(z) = n−z2−r (p−z + q−z)r – has a saddle point
near z = 0; (b) Γ(1 + z) fn(z) – has a saddle point and a distant pole (at z = −1); (c) Γ(z) fn(z) –
has a saddle point coinciding with a pole (z = 0) of Γ(z). Plots are rendered for n = 1024, r = 8,
and p = 0.23.

Thus, our sums (23) and(24) are asymptotically equivalent to the following two integrals:

Iη(n) =
1

2πi

∫ 1
2+i∞

1
2−i∞

Γ(1 + z) fn(z)dz, (26)

Iε(n) =
1

2πi

∫ 1
2+i∞

1
2−i∞

Γ(z) fn(z)dz, (27)

where
fn(z) = n−z2−r

(
p−z + q−z

)r
. (28)

We present plots of the function fn(z) and full expressions under both integrals in Fig.4. Observe,
that under condition (8), fn(z) has a saddle point, which in the case of our first integral (26) is
relatively distant from a nearest pole of the Γ-function, while in the second case (27) the saddle
point coincides with it.

While it is clear that the first integral can be taken directly using the saddle point method [4],
the situation with a coinciding pole is a bit more complicated, but still can be handled using the
Van der Waerden technique [31]. Due to the space constrains, below we will only sketch the main
steps in taking these integrals, but it is not difficult to make them rigorous.

In both cases we start with the following representation

fn(z) = e−gn(z), (29)

where
gn(z) = z log n + r log 2− r log

(
p−z + q−z

)
. (30)

Now, in order to apply the saddle point method, we must write

gn(z) = (log n− rhε) z − r
h

(2)
ε − h2

ε

2
z2 + O

(
r z4

)

= α− β (z − s0)
2 + O

(
log n z4

)
, (31)

8

where

β = r
h

(2)
ε − h2

ε

2
=

1
2
σ2

εh2
ε

(
log n + xσεhε

√
log n

)
, (32)

α =
(log n− rhε)

2

2r
(
h

(2)
ε − h2

ε

) =
x2

2
1

1 + xσεhε/
√

log n

=
x2

2
+ O

(
1√

log n

)
, (33)

s0 =
log n− rhε

r
(
h

(2)
ε − h2

ε

) =
−x

σεhε

√
log n

+ O

(
x2

log n

)
, (34)

and hε, h
(2)
ε , σε, and x are as defined in (9-11,8).

Let now z = s0 + it (−∞ < t < ∞) (i.e. we shift the path of the integration to cross the saddle
point). To evaluate the contribution of Γ(1 + z) around z = s0 → 0, we use:

Γ(1 + z) = 1− γz +
(

π2

12
+

γ2

2

)
z2 + O

(
z3

)

= 1−
(

π2

12
+

γ2

2

)
t2 + O (s0) + O

(
s0t

2
)

+ O
(
t4

)

+ i
{−γt + O (s0t) + O

(
t3

)}
,

and putting everything together we obtain:

Iη(n) =
1
2π

e−α

∫ ∞

−∞
Γ (1 + s0 + it) e−βt2 ×

×
(
1 + O

(
log n (s0 + it)4

))
dt

=
1

2
√

πβ
e−α + O

(
1

log n

)
. (35)

where the cancellation of the imaginary terms and convergence of the real ones are due to the
following properties of Gauss integral (see, e.g. de Bruijn [4, Chapter 4]):

1√
2π

∫ ∞

−∞
tke−βt2dt

=
[

0, if k = 1, 3, 5, . . . ,
1√
2β

k!
(k/2)! 2kβk/2 , if k = 0, 2, 4, (36)

Now by expanding (33) and (32) in (35) we produce:

Iη(n) =
e
− x2

2
1

1+xσεhε/
√

log n

√
2πσεhε

√
log n + xσεhε

√
log n

+ O

(
1

log n

)

=
1√

2πσεhε

√
log n

e−
x2
2 + O

(
1

log n

)
,

which is the expression (12) claimed in Theorem 1.
In our second integral (27) we also can use a decomposition of gn(z) (31), revealing its saddle

point at z = s0. However, since for large n: s0 → 0, we now also have to take into account a pole

9

of Γ(z) at z = 0. Using its Laurent series:

Γ(z) =
1
z
− γ +

(
π2

12
+

γ2

2

)
z + O

(
z2

)

=
s0

s2
0 + t2

− γ + O (s0) + O
(
t2

)

+ i

{
− t

s2
0 + t2

+ O (t)
}

,

we can show that

Iε(n) =
1
2π

e−α

∫ ∞

−∞
Γ (s0 + it) e−βt2 ×

×
(
1 + O

(
log n (s0 + it)4

))
dt

=
1
2π

e−α

∫ ∞

−∞
e−βt2 s0

s2
0 + t2

dt (37)

− γ
1√

2πσεhε

√
log n

e−
x2
2 + O

(
1

log n

)
, (38)

where the remaining integral (37) is due to a principal part of the Laurent series of Γ(z). The other
terms lead to a combination of the standard Gauss integrals, converging to (38).

To evaluate the remaining integral (37) we use a transformation u = t2, which after some algebra
yields:

1
2π

∫ ∞

−∞
e−βt2 1

s2
0 + t2

dt

=
1
2π

∫ ∞

0

e−βu 1
(s2

0 + u)
√

u
du (39)

=
1

2 s0
eβs2

0Erfc
(
s0

√
β
)

, (40)

where
Erfc(x) =

2√
π

∫ ∞

x

e−t2dt ,

is a complementary error function [1].
Now, by noticing that

−α + βs2
0 = 0,

s0

√
β = − x√

2

(
1− x

σεhε

2
√

log n
+ O

(
1

log n

))
,

and
1
2
Erfc

(
− y√

2

)
= 1− Φ(−y) = Φ(y),

and putting everything together, we finally arrive at

Iε(n) = Φ
(

x− x2 σεhε

2
√

log n

)
− γ

1√
2πσεhε

√
log n

e−
x2
2 + O

(
1

log n

)
,

which is the asymptotic expression (16) claimed by Theorem 2.

10

References

[1] Abramowitz, M. and Stegun, I. (1972) Handbook of Mathematical Functions. Dover.

[2] Andersson, A. and Nilsson, S. (1993) Improved Behaviour of Tries by Adaptive Branching. Information
Processing Letters 46 295–300.

[3] Andersson, A. and Nilsson, S. Faster Searching in Tries and Quadtries – An Analysis of Level Com-
pression. Proc. 2nd Annual European Symp. on Algorithms 82–93.

[4] de Bruijn, N. G. (1981) Asymptotic Methods in Analysis. Dover.

[5] Coffman, E. G. Jr. and Eve, J. (1970) File Structures Using Hashing Functions, Comm. ACM, 13 (7)
427–436.

[6] Cover, T. M. and Thomas, J. M. (1991) Elements of Information Theory. John Wiley & Sons.

[7] Devroye, L. (1982) A Note on the Average Depths in Tries. SIAM J. Computing 28 367–371.

[8] Devroye, L. (1992) A Note on the Probabilistic Analysis of PATRICIA Tries. Rand. Structures &
Algorithms 3 203–214.

[9] Devroye, L. (2001) Analysis of Random LC Tries. Rand. Structures & Algorithms 19 (3-4) 359–375.

[10] Dobosiewitz, W. (1978) Sorting by Distributive Partitioning. Information Processing Letters 7 (1) 1–6.

[11] Ehrlich, G. (1981) Searching and Sorting Real Numbers. J. Algorithms 2 1–14.

[12] Flajolet, P. and Sedgewick, R. (1986) Digital Search Trees Revisited. SIAM J. Computing 15 748–767.

[13] Flajolet, P. and Sedgewick, R. (1995) Mellin Transforms and Asymptotics: Finite Differences and Rice’s
Integrals. Theoretical Computer Science 144 (101–124.

[14] Fredkin, E. (1960) Trie Memory. Comm. ACM 3 490–500.

[15] Hofri, M. (1995) Analysis of Algorithms: Computational Methods & Mathematical Tools. Oxford Uni-
versity Press.

[16] Jacquet, P. and Régnier, M. (1986) Trie Partitioning Process: Limiting Distributions. Lecture Notes in
Computer Science 214 196–210. Springer-Verlag.

[17] Jacquet, P. and Szpankowski, W. (1991) Analysis of Digital Trees with Markovian Dependency, IEEE
Trans. Information Theory 37 1470–1475.

[18] Kirschenhofer, P. and Prodinger, H. (1986) Some further results on digital search trees. Lecture Notes
in Computer Science 229 177–185. Springer-Verlag.

[19] Knuth, D. E. (1973) The Art of Computer Programming. Sorting and Searching. Vol. 3. Addison-Wesley.

5259-271.

[20] Mahmoud, H., Flajolet, P., Jacquet, P. and Régnier, M. (2000) Analytic Variations on Bucket Selection
and Sorting, Acta Informatica 36 735–760.

[21] Morrison, D. A. (1968) PATRICIA – Practical Algorithm To Retrieve Information Coded in Alphanu-
meric, J. ACM , 15 (4) 514–534.

[22] Nilsson, S. and Tikkanen, M. (1998) Implementing a Dynamic Compressed Trie. Proc. 2nd Workshop
on Algorithm Engineering 25–36. Saarbruecken, Germany.

[23] Pittel, B. (1985) Asymptotic Growth of a Class of Random Trees, Annals of Probability 18 414–427.

[24] Pittel, B. (1986) Paths in a Random Digital Tree: Limiting Distributions, Advances in Applied Proba-
bility 18 139–155.

11

[25] Reznik, Yu. A. (2002) Some Results on Tries with Adaptive Branching. Theoretical Computer Science
289 (2) 1009–1026.

Also in: (2000) Lecture Notes in Computer Science 1858 148–158. Springer-Verlag.

[26] Sedgewick, R. and Flajolet, P. (1996) An Introduction to the Analysis of Algorithms. Addison-Wesley.

[27] Sussenguth, E. H. Jr. (1963) Use of Tree Structures for Processing Files, Comm. ACM , 6 (5) 272–279.

[28] Szpankowski, W. (1988) Some results on V-ary asymmetric tries, J. Algorithms 9 224–244.

[29] Szpankowski, W. (2001) Average Case Analysis of Algorithms on Sequences. John Wiley & Sons.

[30] Tamminen, M. (1983) Analysis of N-Trees, Information Processing Letters 16 (3) 131–137.

[31] Van der Waerden, B. (1951) On the Method of Saddle Points, Applied Scientific Research B2 33–45.

12

