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Abstract

We introduce and study two parameters of nodes in tries

with multi-digit branching. The first parameter, which we

call a density of a multi-digit node, is a ratio of the number of

non-empty pointers (i.e. pointers to the attached non-empty

sub-tries) to the total number of pointers in this node. The

second parameter, which we call a selectivity of a node, is a

ratio of the number of pointers to external nodes (containing

uniquely identified strings) to the total number of strings

processed by this node. We show, that in a memoryless

model, the average density and the average selectivity of

an r-digit node over n binary strings both yield asymptotic

expressions in the form Φ
�
(r − r∗) /

�
σ∗
√

log n
��

, where,

however, their central values r∗ and factors σ∗ are different

if the source is asymmetric. We use our findings to explain

several interesting facts in the average behaviour of multi-

digit tries, and complement our presentation with a number

of experimental results.

1 Introduction

Digital trees (also known as radix search trees, or tries)
represent a convenient way of organizing alphanumeric
sequences of variable length that facilitates their fast
retrieving, searching, and sorting (cf. [12, 17, 23]).
In its simplest form, a trie over a set of n strings
from an alphabet containing m symbols, is an m-
ary tree, in which each input string corresponds to
a unique path (see Fig.1.a). Typical applications of
tries include searching and sorting algorithms, exact
and approximate string matching, data compression
schemes, and so on.

It is well known, that the average depth of a trie,
which is commonly used to estimate the average time
of a successful search, is asymptotically log n/h+O (1),
where h is the entropy of a stochastic process used to
produce n input strings (cf. [17, 6, 10, 13, 21, 15, 25,
14]). The average number of nodes in a trie, which is

∗On leave from the Institute of Mathematical Machines and
Systems, Kiev, Ukraine.

commonly used to estimate its size, is asymptotically
n log e/h + O (1). These estimates are known to be
correct for a rather large class of stochastic processes,
including memoryless, Markovian, and ψ-mixed models
(cf. [21, 14, 24]).

In an effort to reduce the search time, several
modifications of the trie structure have been proposed.
For example, a multi-digit trie (we use this notation
after [2]) is a trie, which processes some constant
number of symbols r > 1 in each node (see Fig.1.b). It
is easy to observe that this modification is r-times faster
than a regular (single-digit) trie. However, such an
improvement comes at a cost of about mr/r-times more
memory, since r − digit nodes must have mr pointers,
most of which are wasted if r is large.

This motivated the development of adaptive multi-
digit trie structures (cf. [2, 19, 22]), in which the
parameter r (the number of digits to be processed) can
be changed from one node to another (see Fig.1.c-d).

The best known example of such a structure is a
level-compressed trie (or LC- trie) of Andersson and
Nilsson [2], which simply combines all complete levels
of the corresponding m-ary trie. It has been shown
[20, 3] that in a memoryless model, it creates nodes
with r → − log(n)/ log pmin , where n is the number
of strings processed by a node, and pmin = min {pi},
and pi (1 6 i 6 m) are the probabilities of symbols
produced by the source. When the memoryless source is
symmetric (pi = 1/m), the expected depth of an LC-trie
is only ∼ log∗ n [2, 7], however, it grows as O (log log n)
in the asymmetric case [3].

Nilsson and Tikkanen have recently proposed a
modification of an LC-trie [19] which combines all
successive levels of the corresponding m-ary trie until
they reach one that is 50% full (i.e. they allow up to
50% of pointers to be empty). While it was shown that
such an algorithm works substantially faster than the
original LC − trie in practice [19], the rigorous analysis
of its asymptotic behavior has not been provided yet.
It is not known, for example, how large such tree can
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Figure 1: Examples of tries built from 7 binary strings: s1=0000. . . , s2=0001. . . , s3=0010. . . , s4=0100. . . ,
s5=0110. . . , s6=100. . . , s7=110. . . .

be under asymmetric sources, or whether it can attain
O(1) speed (at least in a symmetric case). It is not
clear also if there exists a heuristic for selecting degrees
of nodes (parameters r) leading to a better asymptotic
behavior (in time- and/or space- domains).

In this paper, we will attempt to shed some addi-
tional light on this problem by introducing and study-
ing two new parameters of nodes in adaptive multi-digit
tries. We will show, that a density of a multi-digit
node, which is a ratio of the number of pointers to its
child nodes to the total number of pointers in the node,
directly relates to the overall space-efficiency of a trie
built from nodes with similar densities. For instance,
by studying the average densities of r-digit nodes, we
automatically obtain an answer for space-efficiency of
”relaxed” LC-tries of Nilsson and Tikkanen [19].

We will also show that a selectivity of a multi-digit
node, which is a ratio of the number of pointers to
strings uniquely identified (selected) by this node to
all strings it processes, directly relates to the overall
time-efficiency of a trie built from nodes with similar
selectivities. This observation will allow us to formulate
an algorithm for construction of adaptive tries with
constant average depth (existence of such tries was
predicted in [22]).

For both parameters (density and selectivity) we
will derive their exact and asymptotic expressions in
memoryless model, and will discuss several implications
of these formulas for the average behavior of adaptive
multi-digit tries.

This paper is organized as follows. In the next sec-
tion, we will give formal definitions, present our main
results, and discuss their consequences. The proofs are
delayed until Section 3, where we will also briefly de-
scribe the required techniques of the asymptotic anal-
ysis. Finally, in Section 4, we will show how our pa-
rameters (density and selectivity of nodes) can be used
for construction of adaptive multi-digit tries, and will
present the results of an experimental evaluation of the
resulting data structures.

2 Definitions and Main Results

Consider a set of n distinct strings S = {s1, . . . , sn},
where each string is a sequence of symbols from a binary
alphabet Σ = {0, 1}1. By sk

j we denote a suffix of a
string sj that starts at k-th position in this string (i.e.

1We use binary alphabet for the simplicity of presentation only.
All our results should remain correct (with the appropriate re-
formulations of constants and bases of logarithms) for any finite
alphabet



there exists a string xj , of length |xj | = k, such that
sj = xj sk

j ). By Bink(i) we denote k least significant
digits in binary representation of a number i.

A recursive construction of a binary trie over S can
be done based on the following definition.

Definition 1. A binary trie T (S) over a set of strings
S has the following properties. If n = 0, the trie
is empty. If n = 1 (i.e. S has only one string),
the trie is an external node containing a pointer to
this single string in S. If n > 1, the trie is an
internal node containing pointers to 2 child tries: T (S0)
and T (S1), which contain suffixes of strings from S
that begin with symbols 0 and 1 correspondingly Si ={
s1

j | i s1
j = sj ∈ S

}
.

We depict a trie over a set of 7 binary strings in
Fig.1.a. Observe, that all input strings {s1, . . . , s7}
inserted in a trie can be uniquely identified by the paths
from the root node to the corresponding external nodes.

The next two definitions describe the key properties
of the fixed-order and adaptive multi-digit tries (the cor-
responding examples are shown in Fig.1.b and Fig.1.c).

Definition 2. A multi-digit trie T (S) over a set of
strings S has the following properties. If n = 0, the
trie is empty. If n = 1 , the trie is an external
node containing a pointer to a single string in S.
If n > 1, the trie is an r-digit internal node (r > 1
is a given parameter) containing pointers to 2r child
tries: T (S0) , . . . , T (S2r−1), which contain suffixes of
strings from S that begin with the corresponding r-digit
sequences Si =

{
sr

j |Binr(i) sr
j = sj ∈ S

}
(0 6 i < 2r).

Definition 3. An adaptive multi-digit trie is a multi-
digit trie, such that parameters r defining the number of
digits processed by its nodes are chosen adaptively from
one node to another.

In this paper, we will be dealing with the following
parameters in a trie built over n strings:

An the number of internal nodes;

Xn the number of external nodes: Xn := n;

En the number of empty pointers (i.e. pointers to
empty sub-tries);

Sn the total number of pointers in a trie:

(2.1) Sn = An − 1 + Xn + En;

Cn the external path length (i.e. the sum of lengths of
paths from the root to all external nodes);

000 111
r

n strings

e  (r)nx  (r)na  (r)n

Figure 2: Parameters of an r-digit node processing n
strings: en(r) - the number of empty pointers, xn(r) -
the number of external nodes, and an(r) - the number
of the attached internal nodes.

Dn the average depth of a trie:

(2.2) Dn := Cn/n.

As we mentioned earlier, the average depth Dn of
a trie is commonly used to estimate the average time of
a successful search in a trie. To estimate the amount of
memory used by a trie we can use the total number of
its pointers Sn

2.
Instead of studying these parameters directly, how-

ever, in this paper we will focus our attention on the
statistics of their component quantities in multi-digit
nodes. We illustrate our approach in Fig.2.

Consider an r-digit node processing n strings (i.e.
we picked a root node of a trie over n strings). We have
the following parameters:

an(r) the number of pointers to internal nodes attached
to this node;

xn(r) the number of pointers to external nodes
(strings);

en(r) we denote the number of empty pointers (i.e.
pointers to empty child tries).

Observe that the total number of pointers in such a node
is

(2.3) en(r) + xn(r) + an(r) = 2r.

Now we can introduce two quantities of our main
interest.

2Note that this metric is different from one used in the analysis
of regular tries(cf. [17, 10]). In that case, it was sufficient to use
the number of internal nodes An. However, since the internal
nodes in adaptive tries have different sizes, we have to use another
parameter (Sn) to take into account these differences as well.



Definition 4. A density of an r-digit node processing
n strings ρn(r) is a ratio of the number of pointers to
all non-empty nodes to the total number of pointers in
this node:

(2.4) ρn(r) =
xn(r) + an(r)

2r
= 1− en(r)

2r
.

Definition 5. A selectivity of an r-digit node process-
ing n strings ξn(r) is a ratio of the number of strings
uniquely identified by this node (i.e. strings referenced
by the immediately attached external nodes) to the total
number of strings processed by this node:

(2.5) ξn(r) =
xn(r)

n
.

The relation between these parameters of nodes and
the characteristics of the entire trie is established by the
next two observations.

Definition 6. A density of a multi-digit trie over
n strings Pn is a ratio of the number of non-empty
pointers to the total number of pointers in the trie:

(2.6) Pn =
An − 1 + Xn

Sn
;

Observation 1. Consider a multi-digit trie over n
strings. Let also

ρmin = min
j

{
ρnj (rj)

}
,(2.7)

ρmax = max
j

{
ρnj (rj)

}
,(2.8)

where j enumerates all internal nodes in the trie.
Then the density of this trie satisfies:

(2.9) ρmin 6 Pn 6 ρmax.

Observation 2. Consider a multi-digit trie over n
strings. Let also

ξmin = min
j

{
ξnj (rj)

}
,(2.10)

ξmax = max
j

{
ξnj (rj)

}
,(2.11)

where j enumerates all internal nodes in the trie.
Then the average depth Dn of this trie satisfies:

(2.12)
1

ξmax
6 Dn 6 1

ξmin
.

In other words, if we know the densities ρnj (rj)
and selectivities ξnj (rj) of nodes in a trie, then we
automatically obtain upper and lower bounds for the
corresponding characteristics of the entire trie.

These parameters are especially useful if we study
adaptive tries that naturally impose some constrains on
ρnj (rj) or ξnj (rj) during their construction. In fact,
we already know several examples of density constrained
tries in the form of LC-tries and their variants [2, 19].
On the other hand, the use of selectivity for construction
of tries has not been explored yet, and in Section 4, we
will introduce a new algorithm, constructing selectivity
constrained tries.

In order to study the average behaviour of ρn(r)
and ξn(r) we will assume that our input strings S are
generated by a binary memoryless (or Bernoulli) source
[4]. In this model, symbols of the alphabet Σ = {0, 1}
occur independently of one another, so that if xj is the
j-th symbol produced by this source, then for any j:
Pr {xj = 0} = p, and Pr {xj = 1} = q = 1 − p. If
p = q = 0.5, such source is called symmetric, otherwise
it is asymmetric.

Now, we can express:

ρ̄n(r) := E {ρn(r)} = 1− E {en(r)}
2r

,(2.13)

ξ̄n(r) := E {ξn(r)} =
E {xn(r)}

n
,(2.14)

where expectations are taken over all possible tries over
n strings when parameters of the memoryless source (p
and q) are fixed.

We are now ready to present our main results
regarding the expected densities and selectivities of
nodes in multi-digit tries.

Theorem 2.1. The expected density ρ̄n(r) of an r-digit
node processing n binary strings from a memoryless
source is:

(2.15) ρ̄n(r) = 1− 2−r
r∑

s=0

(
s

r

) (
1− psqr−s

)n
.

If p 6= q and

(2.16) r =
log n

hρ
+ xσρ

√
log n,

where

hρ = − log
√

pq = −1
2

log p− 1
2

log q,(2.17)

h(2)
ρ =

1
2

log2 p +
1
2

log2 q,

σ2
ρ =

h
(2)
ρ − h2

ρ

h3
ρ

,(2.18)

and x = O(1), then, asymptotically, with n →∞:

(2.19) ρ̄n(r) = Φ(−x)
(

1 + O

(
1√

log n

))
,
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Figure 3: Dependencies of the parameters hρ (solid line)
and hξ (dashed line) on the probabilities p, q = 1− p of
the source.

where

(2.20) Φ (x) =
1√
2π

x∫

−∞
e−

t2
2 dt,

is the distribution function of the standard normal
distribution [1].

Theorem 2.2. The expected selectivity ξ̄n(r) of an r-
digit node processing n binary strings from a memory-
less source is:

(2.21) ξ̄n(r) =
r∑

s=0

(
s

r

)
psqr−s

(
1− psqr−s

)n−1
.

If p 6= q and

(2.22) r =
log n

hξ
+ xσξ

√
log n,

where

hξ = −p log p− q log q,(2.23)

h
(2)
ξ = p log2 p + q log2 q,

σ2
ξ =

h
(2)
ξ − h2

ξ

h3
ξ

,(2.24)

and x = O(1), then, asymptotically, with n →∞:

(2.25) ξ̄n(r) = Φ(x)
(

1 + O

(
1√

log n

))
.

where Φ (x) is the distribution function of the standard
normal distribution (2.20).
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Figure 4: Plots of the average density ρ̄n(r) (solid line)
and the average selectivity ξ̄n(r) (dashed line) of an
r-digit node processing n = 128 strings in symmetric
(p = q = 0.5) and asymmetric (p = 0.25) cases.

Observe, that the key parameters hρ and hξ defin-
ing the middle-points in the asymptotic expressions
(2.19,2.25)for ρ̄n(r) and ξ̄n(r) are not always the same:

(2.26) hξ 6 log 2 6 hρ.

The equality in (2.26) is attained only if the memoryless
source is symmetric p = q = 1/2. However, if the source
is asymmetric, the difference between hρ and hξ can be
arbitrary large (see Fig.3).

Consequently, the values of parameters r necessary
to keep ρ̄n(r) and ξ̄n(r) within certain ranges (e.g.
[0.25, 0.5]) will be different if the source is asymmetric
(see Fig.4).

This explains why, for example, a multi-digit trie
that attempts to keep nodes within a certain range of
densities, may not be able to control their selectivities
(and consequently, the constant depth of the trie). On
the other hand, a trie that attempts to keep nodes
within a certain range of selectivities, may not be able to



control their densities (and consequently, the constant
density (and linear size) of the trie).

These observations may also suggest, that from
practical standpoint, it may make most sense to design
tries that represent some compromise between these
two strategies. For example, we can choose r such
that ρ̄n(r) = ξ̄n(r) (a point of intersection of curves
ρ̄n(r) and ξ̄n(r) on Fig.4), which asymptotically leads
to r = log2 n + O(log log n). We conjecture that such
a trie is O (log log n)-fast and O (n log log n)-large under
an asymmetric source, but a detailed analysis is left to
a subsequent paper.

We will give formal definitions of several algorithms
for construction of adaptive multi-digit tries based on
density and selectivity constrains in Section 4, where
we will also evaluate them experimentally.

3 Analysis

To explain claims (2.9) and (2.12) of our Observations
1 and 2 we will use the following simple fact.

Lemma 3.1. Let x1, y1, and x2, y2 be some positive real
numbers, and:

(3.27)
y1

x1
6 y2

x2
.

Then:

(3.28)
y1

x1
6 y1 + y2

x1 + x2
6 y2

x2
.

Proof. Observe, that condition (3.27) also implies that

(3.29)
y1

y2
6 x1

x2
.

Then:

y1 + y2

x1 + x2
=

y2

x2

(
1 + y1/y2

1 + x1/x2

)
6 y2

x2
,

where the last transition is due to (3.29). The left side
of (3.28) is proved in essentially the same way.

Applying (3.28) recursively, we can show that for
an arbitrary set of pairs of positive numbers {xi, yi}:

min
i

yi

xi
6

∑
i yi∑
i xi

6 max
i

yi

xi
.

It remains to notice that:

Pn =
An − 1 + Xn

Sn
=

∑
i (ani (ri) + xni (ri))∑

i 2ri
,

and

1/Dn = Ξn =
Xn

Cn
=

∑
i xni (ri)∑

i ni
,

where ni, ri, ani (ri), and xni (ri) are the corresponding
parameters of nodes of a trie.

For the purpose of compact presentation of proofs
of formulas (2.15) and (2.21) in our Theorems 1 and 2,
we will introduce the following parameter.

Definition 7. Consider an r-digit node processing n
binary strings. By zk

n(r) we denote the number of
its child nodes that contain exactly k strings from the
original set of n.

We immediately notice, that all the previously defined
parameters of r-digit nodes can be easily obtained using
zk
n(r):

en(r) = z0
n(r),(3.30)

xn(r) = z1
n(r),(3.31)

an(r) =
n∑

k=2

zk
n(r) = 2r − z0

n(r)− z1
n(r).(3.32)

The next lemma provides an exact formula for the
average value of zk

n(r) in a memoryless model.

Lemma 3.2. The quantity z̄k
n(r) := E

{
zk
n(r)

}
in a

memoryless model satisfies:
(3.33)

z̄k
n(r) =

(
n

k

) r∑
s=0

(
r

s

) (
psqr−s

)k (
1− psqr−s

)n−k
.

Proof. Consider an r-digit node processing n strings.
Assuming that each of its 2r branches have probabil-
ities p1, . . . , p2r , and using the standard technique for
enumeration of nodes in tries [17, 6.3-3], we can write:

z̄k
n =

∑

l1...l2r

(
n

l1 . . . l2r

)
p1 . . . p2r (δkl1 + . . . + δkl2r )

=
n∑

l=0

(
n

l

) (
pl
1 (1− p1)

n−l + . . . + pl
2r (1− p2r )n−l

)
δkl

=
(

n

k

) (
pk
1 (1− p1)

n−k + . . . + pk
2r (1− p2r )n−k

)
,

(3.34)

where δij is a Kronecker delta. Recall now, that we
are actually working with an r-digit node, so given the
probabilities of each digit (p and q = 1− p for symbols
0 and 1 correspondingly) we can write:

(3.35) pi = psiqr−si ,

where si is the number of occurrences of symbol 0 in a
string leading to a branch i (1 6 i 6 2r). Combining
(3.34) and (3.35), we arrive at the expression (3.33)
claimed by the lemma.



Using the result of this lemma (3.33), mappings
(3.30,3.31), and formulas for the average density (2.13)
and the average selectivity of an r-digit node we can
show that:

ρ̄n(r) = 1− z̄0
n

2r
= 1− 2−r

r∑
s=0

(
r

s

) (
1− psqr−s

)n
,

ξ̄n(r) =
z̄1
n

n
=

r∑
s=0

(
r

s

)
psqr−s

(
1− psqr−s

)n−1
,

which are exactly the expressions (2.15) and (2.21) in
our Theorems.

In order to evaluate asymptotic behaviours of (2.15)
and (2.21) for large n, we will convert them into
alternating sums:

ρ̄n(r) = 1− 2−r
n∑

k=0

(
n

k

)
(−1)k

(
pk + qk

)r
,(3.36)

ξ̄n(r) =
n−1∑

k=0

(
n− 1

k

)
(−1)k

(
pk+1 + qk+1

)r
,(3.37)

and apply Rice’s integral method (cf. Knuth [17,
Ex.5.2.2-54], Flajolet and Sedgewick [10, 11]).

We quote the following formulation of this method
from [24].

Lemma 3.3. (S.O.Rice) Let f(z) be of polynomial
growth at infinity, and analytical left to the vertical line(

1
2 −m− i∞ , 1

2 −m + i∞)
. Then

n∑

k=m

(
n

k

)
(−1)kf(k)

=
1

2πi

∫ 1
2−m+i∞

1
2−m−i∞

f(−z)B(n + 1, z)dz

=
1

2πi

∫ 1
2−m+i∞

1
2−m−i∞

f(−z)n−zΓ(z)
(

1 + O

(
1
n

))
dz,

where B(x, y) = Γ(x)Γ(y)/Γ(x+y) is the beta-function.

Using this result in the alternating sum for the
expected density of an r-digit node (3.36), we obtain

ρ̄n(r) = 1−
(

1 + O

(
1
n

))
×

× 1
2πi

∫ 1
2+i∞

1
2−i∞

n−zΓ(z) 2−r
(
p−z + q−z

)r
dz.(3.38)

Observe, that a function under the integral (3.38)
has a saddle point coinciding with a pole (z = 0) of
Γ(z) (see Fig.5). Hence, we have to use the saddle point
method [5]. Due to the space constrains we will only
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Figure 5: A saddle point of n−zΓ(z) 2−r (p−z + q−z)r

near the pole (z = 0) of Γ(z). The plot is rendered for
n = 1024, r = 10, and p = 0.325.

sketch the main steps in this process, and a rigorous
proof (which requires the use of Van der Waerden
technique [26]) is delayed till the final version of this
paper.

To apply the saddle point method we write:

n−z2−r
(
p−z + q−z

)r

= e−(z log n+r(log 2−log(p−z+q−z)))

= e
−
 

(log n−rhρ)2

2r(h
(2)
ρ −h2

ρ)
−r

h
(2)
ρ −h2

ρ
2 (z−s0)

2+O(r z3)
!

,(3.39)

where
(3.40)

s0 =
log n− rhρ

r
(
h

(2)
ρ − h2

ρ

) =
−x

hρσρ

√
log n

+ O

(
x2

log n

)
,

and hρ, h
(2)
ρ , σρ, and x are as defined in (2.16-2.18).

Let now z = s0 + it (−∞ < t < ∞). Since s0 is
close to the pole of Γ(z) at zero (3.40), we must use (at
least, principal part of) its Laurent series:

Γ(z) ∼ 1
s0 + it

=
s0

s2
0 + t2

− i
t

s2
0 + t2

.

Combining the above formulas and substituting u =
t2 we arrive at

1
πi

∫ ∞

0

e
−
�

x2
2 + 1

2 (log n+xhρσρ

√
log n)h2

ρσ2
ρt2+O

�
x3√
log n

��
s0 dt

s2
0 + t2

=
(

1 + O

(
x3

√
log n

))
s0

πi
e−

x2
2

∫ ∞

0

e−uβ 1√
u (s2

0 + u)
du,

where

β =
1
2

(
log n + xhρσρ

√
log n

)
h2

ρσ
2
ρ.



But, it can be shown that

1
πi

∫ ∞

0

e−uβ 1√
u (s2

0 + u)
du =

1
2s0

eβs2
0Erfc

(
s0

√
β
)

,

where

Erfc(x) =
2√
π

∫ ∞

x

e−t2dt ,

is a complementary error function [1]. Then, by observ-
ing that

s0

√
β =

−x√
2

+ O

(
x2

√
log n

)
,

and

−x2

2
+ βs2

0 = O

(
x3

√
log n

)
,

we finally obtain

ρ̄n(r) = 1− 1
2

Erfc
(−x√

2

)(
1 + O

(
1√

log n

))

= Φ(−x)
(

1 + O

(
1√

log n

))
,

which is the asymptotic expression (2.19) claimed by
the Theorem 1.

The proof of the asymptotic expression for selectiv-
ity of an r-digit node (2.25) is obtained in essentially the
same way. In fact, the asymptotic behaviour of an alter-
nating sum almost identical to (3.37) has already been
studied by Louchard [18] and Szpankowski [24, Ex.8.19].

4 Experimental Results

In this section we will study the following four imple-
mentations of adaptive multi-digit tries.

The first algorithm is a well-known level-compressed
trie due to Andersson and Nilsson [2].

Definition 8. A level-compressed trie is an adaptive
multi-digit trie, such that the number of digits r pro-
cessed by its nodes with n inserted strings satisfy:

(4.41) r = max {j | ρn(j) = 1} ,

The second algorithm is a density-constrained ver-
sion a level-compressed trie, proposed by Nilsson and
Tikkanen [19].

Definition 9. A density-constrained multi-digit trie is
an adaptive multi-digit trie, such that the number of
digits r processed by its nodes over n strings satisfy:

(4.42) r ∈ {j | ρ1 6 ρn(j) 6 ρ2} ,

where 0 < ρ1 6 ρ2 6 1 are some positive constants.

The third algorithm, which (to the best of the
author’s knowledge) is novel, uses the selectivity of a
multi-digit node to control the construction.

Definition 10. A selectivity-constrained multi-digit
trie is an adaptive multi-digit trie, such that the number
of digits r processed by its nodes over n strings satisfy:

(4.43) r ∈ {j | ξ1 6 ξn(j) 6 ξ2} ,

where 0 < ξ1 6 ξ2 6 1 are some positive constants.

Finally, we also consider an algorithm, which we call
a logarithmic trie3, defined as follows.

Definition 11. A logarithmic multi-digit trie is an
adaptive multi-digit trie, such that the number of digits
r processed by its nodes over n strings satisfy:

(4.44) r = dlog2 ne.
In Fig. 6 and Fig. 7 we present the results

of experimental evaluation of the expected successful
search time and expected memory usage of the above
mentioned implementations of multi-digit tries.

To build our tries we used computer-generated
sequences of binary digits for symmetric (p = 0.5) and
asymmetric (p = 0.25) cases. To be able to identify
even extremely slowly growing functions (e.g. log∗ n) we
allowed the number of strings n in tries to grow from 2 to
105. At each point (each fixed value for n) we generated
103 different tries (using the same source model), and
estimated their expected depths and relative sizes.

Observe that in the symmetric case (see Fig.6.a),
LC-trie is the only structure which depth is clearly in-
creasing with n (and its rate well matches the theoretic
estimate O(log∗ n) [2]). The depths of the other tries are
fluctuating in the range (1.5, 2.5) with no visible drift
upward, which suggests that they are likely O(1)-fast.

The situation is quite different in the asymmetric
case (see Fig.6.b). Here, both LC- and 50%-dense tries
are growing pretty rapidly (likely at O(log log n) rate),
logarithmic trie are also growing, but at a somewhat
slower rate, while 50%-selective tries just fluctuate in
the range (1.8, 2.8), which suggests that they are O(1)-
fast.

Analyzing the results for the expected relative sizes
(see Fig. 7.a), we can conjecture that all of our mod-
ifications are O(n)-large when the source is symmet-
ric. In the asymmetric case (see Fig.7.b), however, the
50%-selective tries tend to grow very rapidly (at least
with O

(
nlog 2/hξ

)
rate). At the same time, the relative

sizes of both LC- and 50%-dense tries are fluctuating
between constants, which indicates that they both are
O(n)-large.

3This algorithm can also be interpreted as a multi-digit imple-
mentation of N -trees, cf. Dobosiewitz [8] and Ehrlich [9].
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Figure 6: Average depths Cn/n of several modifications of multi-digit tries when (a) memoryless source is
symmetric (p = 0.5), and (b) the source is asymmetric (p = 0.25). Axis x represents the number of strings
n inserted in tries.

5 Conclusions

We have introduced and studied parameters of density
and selectivity of nodes in adaptive multidigit tries, and
have shown how they can be used to construct tries
with easily controllable space- and time- characteris-
tics. We have shown, that in the asymmetric memo-
ryless model these strategies lead to principally differ-
ent asymptotic modes (where with growing asymme-
try density-constrained tries become much less efficient
in time, and selectivity-constratined tries become pro-
hibitively large in space), and that better time/space
compromise is achieved by logarithmic tries (i.e. tries
with log2 n-level nodes).
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